Ping Zhang, Han Yan, Zhihe Liang, Peng Zhang, Xiao-Hua Li, Xian-Zheng Yuan, Guangli Yu*, Wei Wang* and Chao Cai*,
{"title":"Synthesis of Fucoidan-Biomimetic Glycopolymers with Flexible Skeletons for Enhanced Anti-Herpes Virus Efficacy","authors":"Ping Zhang, Han Yan, Zhihe Liang, Peng Zhang, Xiao-Hua Li, Xian-Zheng Yuan, Guangli Yu*, Wei Wang* and Chao Cai*, ","doi":"10.1021/acsnano.4c1506010.1021/acsnano.4c15060","DOIUrl":null,"url":null,"abstract":"<p >Synthetic glycopolymers can be designed to mimic the structure and biological function of natural polysaccharides, offering a wide range of potential applications in the pharmaceutical and medicine. Nevertheless, amphiphilic synthetic glycopolymers commonly form biologically inert nanomicelle structures in aqueous solutions through spontaneous self-assembly. Envisioning that preventing self-assembly is pivotal to the full realization of the biological activities of the glycopolymers, we design and prepare a class of norbornene-derived hydrophilic glycopolymers containing sulfated fucose amenable to skeleton modification through ring-opening metathesis polymerization (ROMP). The skeleton of the fucoidan glycopolymers was chemically modified with hydrogen reduction, dihydroxylation, and oxidation following subsequent sulfation. We conducted physicochemical property characterization of the skeleton-modified glycopolymers to demonstrate that the hydrophilic glycopolymers have a more flexible structure compared to conventional polymers, and the sulfated fucoidan glycopolymers form a non-assembly morphology similar to the natural polysaccharides. Furthermore, the non-assembly glycopolymers exhibit significantly enhanced anti-HSV-1 activities. Our findings underscore the significance of the rational design of polymer skeletons in the development of structural and functional mimics of natural polysaccharides.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 16","pages":"15411–15424 15411–15424"},"PeriodicalIF":16.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c15060","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic glycopolymers can be designed to mimic the structure and biological function of natural polysaccharides, offering a wide range of potential applications in the pharmaceutical and medicine. Nevertheless, amphiphilic synthetic glycopolymers commonly form biologically inert nanomicelle structures in aqueous solutions through spontaneous self-assembly. Envisioning that preventing self-assembly is pivotal to the full realization of the biological activities of the glycopolymers, we design and prepare a class of norbornene-derived hydrophilic glycopolymers containing sulfated fucose amenable to skeleton modification through ring-opening metathesis polymerization (ROMP). The skeleton of the fucoidan glycopolymers was chemically modified with hydrogen reduction, dihydroxylation, and oxidation following subsequent sulfation. We conducted physicochemical property characterization of the skeleton-modified glycopolymers to demonstrate that the hydrophilic glycopolymers have a more flexible structure compared to conventional polymers, and the sulfated fucoidan glycopolymers form a non-assembly morphology similar to the natural polysaccharides. Furthermore, the non-assembly glycopolymers exhibit significantly enhanced anti-HSV-1 activities. Our findings underscore the significance of the rational design of polymer skeletons in the development of structural and functional mimics of natural polysaccharides.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.