{"title":"Nanofiltration Membrane via Organic Nanoparticle-Assisted Interface Polymerization for Efficient Dye/Salt Separation","authors":"Tao Yao, Mingyu Zhang, Dongli Guo and Fen Ran*, ","doi":"10.1021/acs.langmuir.5c0042010.1021/acs.langmuir.5c00420","DOIUrl":null,"url":null,"abstract":"<p >Nanofiltration membranes have the advantages of high flux and good selectivity, making them ideal materials for solving water resource pollution and scarcity; however, the mechanism of interface polymer membrane wrinkling induced by nanofillers is not clear, and the low flux of interface polymer membranes is a pressing issue for researchers. In this work, superhydrophilic <span>l</span>-histidine-modified nanoparticles are successfully synthesized and added to the interface polymerization process, where the nanoparticles also participate in the interface polymerization reaction, inducing interface polymerization. The formation of layered wrinkles on the membrane surface greatly increases the contact area of the membrane surface and enhances the hydrophilicity. The water contact angle on the membrane surface decreases from the original 51.85 to 28.72°. When the modifier-modified dopamine particles are added at a concentration of 0.1 wt %, the water permeance of the nanofiltration membrane reaches 145.57 L m<sup>–2</sup> h<sup>–1</sup> MPa<sup>–1</sup>, with a dye rejection rate of over 99% and high permeability to inorganic salt ions, confirming that the membrane can be used for efficient dye/salt separation. Furthermore, the stability of the membrane is improved, greatly enhancing its practical applicability.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 16","pages":"10490–10500 10490–10500"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c00420","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanofiltration membranes have the advantages of high flux and good selectivity, making them ideal materials for solving water resource pollution and scarcity; however, the mechanism of interface polymer membrane wrinkling induced by nanofillers is not clear, and the low flux of interface polymer membranes is a pressing issue for researchers. In this work, superhydrophilic l-histidine-modified nanoparticles are successfully synthesized and added to the interface polymerization process, where the nanoparticles also participate in the interface polymerization reaction, inducing interface polymerization. The formation of layered wrinkles on the membrane surface greatly increases the contact area of the membrane surface and enhances the hydrophilicity. The water contact angle on the membrane surface decreases from the original 51.85 to 28.72°. When the modifier-modified dopamine particles are added at a concentration of 0.1 wt %, the water permeance of the nanofiltration membrane reaches 145.57 L m–2 h–1 MPa–1, with a dye rejection rate of over 99% and high permeability to inorganic salt ions, confirming that the membrane can be used for efficient dye/salt separation. Furthermore, the stability of the membrane is improved, greatly enhancing its practical applicability.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).