Seok Ju Hong, Yu Rim Lee, Atanu Bag, Hyo Soo Kim, Tran Quang Trung, M. Junaid Sultan, Dong-Bin Moon, Nae-Eung Lee
{"title":"Bio-inspired artificial mechanoreceptors with built-in synaptic functions for intelligent tactile skin","authors":"Seok Ju Hong, Yu Rim Lee, Atanu Bag, Hyo Soo Kim, Tran Quang Trung, M. Junaid Sultan, Dong-Bin Moon, Nae-Eung Lee","doi":"10.1038/s41563-025-02204-y","DOIUrl":null,"url":null,"abstract":"<p>Tactile perception involves the preprocessing of signals from slowly adapting and fast-adapting afferent neurons, which exhibit synapse-like interactions between mechanoreceptors and their dendrites or terminals, transmitting signals to the brain. Emulating these adaptation and sensory memory functions is crucial for artificial tactile sensing systems. Here, inspired by human tactile afferent systems, we present an array of artificial synaptic mechanoreceptors with built-in synaptic functions by vertically integrating synaptic transistors with a reduced graphene oxide channel, an ionogel gate dielectric and an elastomeric fingerprint-like receptive layer in an all-in-one platform. Triboelectric-capacitive gating between the receptive layer and gate dielectric in response to tactile stimulation governs excitatory post-synaptic current patterns, enabling slowly adapting and fast-adapting characteristics for signal preprocessing. The artificial synaptic mechanoreceptor array demonstrated handwriting style, surface pattern and texture discrimination via machine learning using fused slowly adapting and fast-adapting post-synaptic values, offering high data efficiency and potential for intelligent skin.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"24 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02204-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tactile perception involves the preprocessing of signals from slowly adapting and fast-adapting afferent neurons, which exhibit synapse-like interactions between mechanoreceptors and their dendrites or terminals, transmitting signals to the brain. Emulating these adaptation and sensory memory functions is crucial for artificial tactile sensing systems. Here, inspired by human tactile afferent systems, we present an array of artificial synaptic mechanoreceptors with built-in synaptic functions by vertically integrating synaptic transistors with a reduced graphene oxide channel, an ionogel gate dielectric and an elastomeric fingerprint-like receptive layer in an all-in-one platform. Triboelectric-capacitive gating between the receptive layer and gate dielectric in response to tactile stimulation governs excitatory post-synaptic current patterns, enabling slowly adapting and fast-adapting characteristics for signal preprocessing. The artificial synaptic mechanoreceptor array demonstrated handwriting style, surface pattern and texture discrimination via machine learning using fused slowly adapting and fast-adapting post-synaptic values, offering high data efficiency and potential for intelligent skin.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.