Super-Clausius–Clapeyron scaling of extreme precipitation explained by shift from stratiform to convective rain type

IF 15.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Nicolas A. Da Silva, Jan O. Haerter
{"title":"Super-Clausius–Clapeyron scaling of extreme precipitation explained by shift from stratiform to convective rain type","authors":"Nicolas A. Da Silva, Jan O. Haerter","doi":"10.1038/s41561-025-01686-4","DOIUrl":null,"url":null,"abstract":"<p>Short-duration precipitation extremes pose a risk to human lives and infrastructure and may be strongly affected by climate change. In the past two decades, several studies reported that extreme rainfall intensity can increase with temperature at rates exceeding the thermodynamic Clausius–Clapeyron rate. Two explanations have been proposed for this: (1) convective precipitation—arising from thunderstorms—might be strongly invigorated with temperature; (2) a statistical shift from low-intensity stratiform rainfall to higher-intensity convective rainfall might amplify the scaling rate with temperature. Here we use high spatio-temporal-resolution lightning records in Europe to test these two hypotheses at the storm scale, that is, within 5 km spatially and 10 min temporally. We show that the statistical shift in rain type alone accounts for the observed super-Clausius–Clapeyron scaling rate, and when considered in isolation, both stratiform and convective precipitation extremes increase at the Clausius–Clapeyron rate—thus refuting hypothesis (1). Mesoscale convective systems, which play a dominant role in generating precipitation extremes, do feature a super-Clausius–Clapeyron scaling rate because of a substantial increase in their convective fraction with dew point temperature above 14 °C. Analyses of intensity–duration–frequency curves show that extreme sub-hourly storms are the most strongly intensified with higher dew point temperatures.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41561-025-01686-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Short-duration precipitation extremes pose a risk to human lives and infrastructure and may be strongly affected by climate change. In the past two decades, several studies reported that extreme rainfall intensity can increase with temperature at rates exceeding the thermodynamic Clausius–Clapeyron rate. Two explanations have been proposed for this: (1) convective precipitation—arising from thunderstorms—might be strongly invigorated with temperature; (2) a statistical shift from low-intensity stratiform rainfall to higher-intensity convective rainfall might amplify the scaling rate with temperature. Here we use high spatio-temporal-resolution lightning records in Europe to test these two hypotheses at the storm scale, that is, within 5 km spatially and 10 min temporally. We show that the statistical shift in rain type alone accounts for the observed super-Clausius–Clapeyron scaling rate, and when considered in isolation, both stratiform and convective precipitation extremes increase at the Clausius–Clapeyron rate—thus refuting hypothesis (1). Mesoscale convective systems, which play a dominant role in generating precipitation extremes, do feature a super-Clausius–Clapeyron scaling rate because of a substantial increase in their convective fraction with dew point temperature above 14 °C. Analyses of intensity–duration–frequency curves show that extreme sub-hourly storms are the most strongly intensified with higher dew point temperatures.

Abstract Image

极端降水的超克劳修斯-克拉珀龙标度由层状雨向对流雨型转变解释
短时间极端降水对人类生命和基础设施构成威胁,并可能受到气候变化的强烈影响。在过去的二十年里,一些研究报告说极端降雨强度可以以超过热力学克劳修斯-克拉珀龙速率的速度随温度的增加而增加。对此提出了两种解释:(1)由雷暴引起的对流降水可能随着温度的升高而增强;(2)从低强度层状降水到高强度对流降水的统计转变可能会扩大结垢率。本文利用欧洲的高时空分辨率闪电记录在风暴尺度(即空间5公里范围内和时间10分钟范围内)对这两种假设进行了验证。我们发现,降雨类型的统计变化单独解释了观测到的超Clausius-Clapeyron尺度率,当单独考虑时,层状和对流极端降水都以Clausius-Clapeyron速率增加,从而反驳了假设(1)。中尺度对流系统在产生极端降水中起主导作用。具有超级克劳修斯-克拉珀龙结垢率,因为当露点温度高于14°C时,它们的对流分数大幅增加。强度-持续时间-频率曲线分析表明,露点温度越高,极端次小时风暴的强度越强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Geoscience
Nature Geoscience 地学-地球科学综合
CiteScore
26.70
自引率
1.60%
发文量
187
审稿时长
3.3 months
期刊介绍: Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields. The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies. Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology. Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信