Bioinspired single-atom nanozymes for microplastic degradation

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yonghui Gao, Bin Pan, Yimeng Wang, Zhiling Zhu
{"title":"Bioinspired single-atom nanozymes for microplastic degradation","authors":"Yonghui Gao, Bin Pan, Yimeng Wang, Zhiling Zhu","doi":"10.1039/d5cc01170a","DOIUrl":null,"url":null,"abstract":"Copper single-atom-loaded graphitic nitride nanozymes (Cu SAs) were constructed by bioinspired rational design from natural laccase and density functional theory calculations. Theoretical investigation revealed the geometrical and electronic structural advantages of the Cu–N active center. Experimental tests confirmed the excellent performance in microplastic degradation, with more than 90% mineralized into non-toxic products, providing a new strategy for microplastic pollution management.","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":"7 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cc01170a","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Copper single-atom-loaded graphitic nitride nanozymes (Cu SAs) were constructed by bioinspired rational design from natural laccase and density functional theory calculations. Theoretical investigation revealed the geometrical and electronic structural advantages of the Cu–N active center. Experimental tests confirmed the excellent performance in microplastic degradation, with more than 90% mineralized into non-toxic products, providing a new strategy for microplastic pollution management.

Abstract Image

微塑料降解的生物启发单原子纳米酶
以天然漆酶为基础,通过密度泛函理论计算,采用仿生理性设计构建了铜单原子负载的氮化石墨纳米酶(Cu SAs)。理论研究揭示了Cu-N活性中心的几何和电子结构优势。实验测试证实了微塑料降解性能优异,90%以上矿化成无毒产物,为微塑料污染治理提供了新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Communications
Chemical Communications 化学-化学综合
CiteScore
8.60
自引率
4.10%
发文量
2705
审稿时长
1.4 months
期刊介绍: ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信