P-Type Stacking Dominated Electrochemical Process Enables Fast Na+ Transport for High-Energy P2/O3 Biphasic Cathodes

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuai Sun, Xu Zhu, Haojie Dong, Yi-Hu Feng, Yongwei Tang, Meng-Ying Li, Shao-Wen Xu, Hanshen Xin, Chuansheng Ma, Guang-Xu Wei, Ling-Jiao Hu, Hao Qin, Mengting Liu, Yao Xiao, Bing Xiao, Peng-Fei Wang
{"title":"P-Type Stacking Dominated Electrochemical Process Enables Fast Na+ Transport for High-Energy P2/O3 Biphasic Cathodes","authors":"Shuai Sun, Xu Zhu, Haojie Dong, Yi-Hu Feng, Yongwei Tang, Meng-Ying Li, Shao-Wen Xu, Hanshen Xin, Chuansheng Ma, Guang-Xu Wei, Ling-Jiao Hu, Hao Qin, Mengting Liu, Yao Xiao, Bing Xiao, Peng-Fei Wang","doi":"10.1002/adfm.202503900","DOIUrl":null,"url":null,"abstract":"Fabricating P2/O3 intergrowth structure in layered cathode materials is a viable strategy to improve the electrochemical property of sodium-ion batteries. Unfortunately, such biphasic materials have to bear obscure thermodynamic formation process and complicated structure-property associations between multiple phase transitions and Na<sup>+</sup> diffusion kinetics at high state of charge. Here this issue is addressed by tailoring the crystalline domains of the P2 and O3 phase while reducing the residual alkali content in target P2/O3-Na<sub>0.8</sub>Mg<sub>0.06</sub>Ni<sub>0.34</sub>Mn<sub>0.54</sub>Ti<sub>0.06</sub>O<sub>2</sub> cathode material, which consists of 24.26% P2 phase and 75.74% O3 phase. The thermodynamic phase distribution at atomic resolution and dynamic phase evolution identification are parsed out by experimental scanning transmission electron microscopy and FAULTS simulations. Moreover, the dislocations at phase boundary of the P2 and O3 crystalline domains serve to prevent O-type stacking and therefore allow most P-type stacking to dominate the electrochemical process in deep Na-depleted state, thereby facilitating Na<sup>+</sup> diffusion kinetics to ensure high-rate capability. Consequently, the biphasic cathode material exhibits a high energy density of 534 Wh kg<sup>−1</sup> and a reversible capacity of 110 mAh g<sup>−1</sup> at 10 C. This work highlights the importance of thermodynamic phase modulation in improving the Na<sup>+</sup> transport to obtain high-rate and high-energy P2/O3 biphasic cathode materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"71 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202503900","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fabricating P2/O3 intergrowth structure in layered cathode materials is a viable strategy to improve the electrochemical property of sodium-ion batteries. Unfortunately, such biphasic materials have to bear obscure thermodynamic formation process and complicated structure-property associations between multiple phase transitions and Na+ diffusion kinetics at high state of charge. Here this issue is addressed by tailoring the crystalline domains of the P2 and O3 phase while reducing the residual alkali content in target P2/O3-Na0.8Mg0.06Ni0.34Mn0.54Ti0.06O2 cathode material, which consists of 24.26% P2 phase and 75.74% O3 phase. The thermodynamic phase distribution at atomic resolution and dynamic phase evolution identification are parsed out by experimental scanning transmission electron microscopy and FAULTS simulations. Moreover, the dislocations at phase boundary of the P2 and O3 crystalline domains serve to prevent O-type stacking and therefore allow most P-type stacking to dominate the electrochemical process in deep Na-depleted state, thereby facilitating Na+ diffusion kinetics to ensure high-rate capability. Consequently, the biphasic cathode material exhibits a high energy density of 534 Wh kg−1 and a reversible capacity of 110 mAh g−1 at 10 C. This work highlights the importance of thermodynamic phase modulation in improving the Na+ transport to obtain high-rate and high-energy P2/O3 biphasic cathode materials.

Abstract Image

p型堆叠主导电化学过程实现高能P2/O3双相阴极的快速Na+输运
在层状正极材料中制备P2/O3互生结构是提高钠离子电池电化学性能的可行策略。不幸的是,这种双相材料在高电荷状态下必须承受模糊的热力学形成过程和复杂的多相变和Na+扩散动力学之间的结构-性能关联。本文通过调整P2和O3相的晶域,同时降低P2/O3- na0.8 mg0.06 ni0.34 mn0.54 ti0.06 o2正极材料(由24.26%的P2相和75.74%的O3相组成)中残余碱的含量来解决这一问题。通过实验扫描透射电镜和断层模拟,分析了原子分辨率下的热力学相分布和动态相演化识别。此外,P2和O3晶域的相边界位错阻止了o型堆叠,从而使p型堆叠主导了深Na贫态的电化学过程,从而促进了Na+扩散动力学,确保了高速率性能。因此,该双相正极材料在10℃下具有534 Wh kg−1的高能量密度和110 mAh g−1的可逆容量。这项工作强调了热力学相位调制在改善Na+输运以获得高速率和高能量P2/O3双相正极材料中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信