Scandium Induced Structural Disorder and Vacancy Engineering in Li3Sb – Superior Ionic Conductivity in Li3−3xScxSb

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jingwen Jiang, Tobias Kutsch, Wilhelm Klein, Manuel Botta, Anatoliy Senyshyn, Robert J. Spranger, Volodymyr Baran, Leo van Wüllen, Hubert A. Gasteiger, Thomas F. Fässler
{"title":"Scandium Induced Structural Disorder and Vacancy Engineering in Li3Sb – Superior Ionic Conductivity in Li3−3xScxSb","authors":"Jingwen Jiang, Tobias Kutsch, Wilhelm Klein, Manuel Botta, Anatoliy Senyshyn, Robert J. Spranger, Volodymyr Baran, Leo van Wüllen, Hubert A. Gasteiger, Thomas F. Fässler","doi":"10.1002/aenm.202500683","DOIUrl":null,"url":null,"abstract":"Solid-state electrolytes are indispensable for all-solid-state batteries. Sulfide-based solid electrolytes, such as Li<sub>10</sub><i>M</i>P<sub>2</sub>S<sub>12</sub> (<i>M </i>= Ge, Sn) and Li<sub>6</sub>PS<sub>5</sub><i>X</i> (<i>X</i> = Cl, Br, I), exhibit excellent ionic conductivities, with the fastest Li<sup>+</sup> ion conductor, Li<sub>9.54</sub>[Si<sub>0.6</sub>Ge<sub>0.4</sub>]<sub>1.74</sub>P<sub>1.44</sub>S<sub>11.1</sub>Br<sub>0.3</sub>O<sub>0.6</sub>, achieving 32 mS cm<sup>−1</sup> at room temperature. Phosphide-based solid electrolytes have recently shown great potential with diverse structures and variable ionic conductivities. This compound class is expanded to the heavier homolog Li<sub>3</sub>Sb, showing its transformation to a superionic conductor through aliovalent substitution of lithium with scandium. Resulting Li<sub>2.55</sub>Sc<sub>0.15</sub>Sb shows an unexpected high ionic conductivity of 42(6) mS cm<sup>−1</sup> at 298 K under electron-blocking conditions in line with a very low activation energy of 17.6(8) kJ mol<sup>−1</sup>, representing the highest and lowest reported values, respectively, for a solid Li-ion conductor so far. Additionally, the compound exhibits a significant, but two orders of magnitude lower electronic conductivity making it a promising candidate for mixed ionic-electronic conductor (MIEC). The series of new compounds Li<sub>3−3</sub><i><sub>x</sub></i>Sc<i><sub>x</sub></i>Sb, maintains the β-Li<sub>3</sub>Sb structure up to a nominal composition of <i>x</i>(Sc) = 0.15, with Sc<sup>3+</sup> ions occupying the tetrahedral voids of the face-centered cubic Sb anion arrangement and creating vacancies that facilitate efficient Li<sup>+</sup> ion diffusion pathways. This work proposes a general design strategy for vacancy engineering in which replacement of Li with Sc in simple binary compounds has a direct impact on the ion mobility.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"24 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202500683","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state electrolytes are indispensable for all-solid-state batteries. Sulfide-based solid electrolytes, such as Li10MP2S12 (= Ge, Sn) and Li6PS5X (X = Cl, Br, I), exhibit excellent ionic conductivities, with the fastest Li+ ion conductor, Li9.54[Si0.6Ge0.4]1.74P1.44S11.1Br0.3O0.6, achieving 32 mS cm−1 at room temperature. Phosphide-based solid electrolytes have recently shown great potential with diverse structures and variable ionic conductivities. This compound class is expanded to the heavier homolog Li3Sb, showing its transformation to a superionic conductor through aliovalent substitution of lithium with scandium. Resulting Li2.55Sc0.15Sb shows an unexpected high ionic conductivity of 42(6) mS cm−1 at 298 K under electron-blocking conditions in line with a very low activation energy of 17.6(8) kJ mol−1, representing the highest and lowest reported values, respectively, for a solid Li-ion conductor so far. Additionally, the compound exhibits a significant, but two orders of magnitude lower electronic conductivity making it a promising candidate for mixed ionic-electronic conductor (MIEC). The series of new compounds Li3−3xScxSb, maintains the β-Li3Sb structure up to a nominal composition of x(Sc) = 0.15, with Sc3+ ions occupying the tetrahedral voids of the face-centered cubic Sb anion arrangement and creating vacancies that facilitate efficient Li+ ion diffusion pathways. This work proposes a general design strategy for vacancy engineering in which replacement of Li with Sc in simple binary compounds has a direct impact on the ion mobility.

Abstract Image

钪诱导的Li3Sb结构紊乱和空位工程——Li3−3xScxSb优异的离子电导率
固态电解质是全固态电池不可缺少的。硫化物基固体电解质Li10MP2S12 (M = Ge, Sn)和Li6PS5X (X = Cl, Br, I)表现出优异的离子导电性,其中Li+离子导体Li9.54[Si0.6Ge0.4]1.74 p1.44 s1.1 br0.3 o0.6在室温下达到32 mS cm−1。近年来,磷基固体电解质以其多样的结构和多变的离子电导率显示出巨大的潜力。该化合物类扩展到较重的同系物Li3Sb,表明其通过用钪取代锂而转变为超离子导体。结果表明,Li2.55Sc0.15Sb在298 K下具有42(6)mS cm−1的高离子电导率,在电子阻断条件下具有17.6(8)kJ mol−1的极低活化能,分别代表了迄今为止报道的固体锂离子导体的最高和最低值。此外,该化合物表现出显著的,但两个数量级的低电子导电性,使其成为混合离子-电子导体(MIEC)的有希望的候选者。该系列新化合物Li3−3xScxSb保持了β-Li3Sb的结构,其标称组成为x(Sc) = 0.15,其中Sc3+离子占据了面心立方Sb阴离子排列的四面体间隙,并创造了有利于Li+离子有效扩散途径的空位。这项工作提出了一种空位工程的一般设计策略,其中简单二元化合物中的Sc取代Li对离子迁移率有直接影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信