{"title":"Electrospun Decellularized Skeletal Muscle Tissue/Polycaprolactone/Polyaniline as a Potential Scaffold for Muscle Tissue Engineering","authors":"Faraz Sigaroodi, Marziyeh Jalali Monfared, Masoumeh Foroutan Koudehi, Ramin Zibaseresht","doi":"10.1002/jbm.a.37920","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Skeletal muscle tissue is capable of self-healing on a small scale. However, during extensive trauma or surgery, regenerative capacities are lost due to the loss of muscle cells and extracellular matrix. Therefore, the development of tissue engineering strategies for the regeneration of muscle tissue should be considered. In this study, we electrospun decellularized skeletal muscle tissue (DSM)/polycaprolactone (PCL)/polyaniline (PANi) as a bioactive polymer composite and investigated the structural characteristics, physicochemical properties, and effect of PANi on these properties. Next, the biological and myogenic effects of scaffolds on human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) were investigated. The results showed that DSM/PCL/PANi is a conductive fibrous scaffold with favorable physical and chemical properties for muscle tissue engineering; it is biocompatible with hWJ-MSCs and stimulates their morphology. Additionally, hWJ-MSCs cultured on DSM/PCL/PANi showed a significant increase in the expression of MyoD, Myogenin, and MHC. Laboratory experiments showed that the electrospun scaffold of DSM/PCL/PANi is biocompatible with favorable physical properties for the growth of stem cells and the expression of myogenic markers, which can be useful in the development of biological scaffold approaches for muscle tissue engineering.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37920","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Skeletal muscle tissue is capable of self-healing on a small scale. However, during extensive trauma or surgery, regenerative capacities are lost due to the loss of muscle cells and extracellular matrix. Therefore, the development of tissue engineering strategies for the regeneration of muscle tissue should be considered. In this study, we electrospun decellularized skeletal muscle tissue (DSM)/polycaprolactone (PCL)/polyaniline (PANi) as a bioactive polymer composite and investigated the structural characteristics, physicochemical properties, and effect of PANi on these properties. Next, the biological and myogenic effects of scaffolds on human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) were investigated. The results showed that DSM/PCL/PANi is a conductive fibrous scaffold with favorable physical and chemical properties for muscle tissue engineering; it is biocompatible with hWJ-MSCs and stimulates their morphology. Additionally, hWJ-MSCs cultured on DSM/PCL/PANi showed a significant increase in the expression of MyoD, Myogenin, and MHC. Laboratory experiments showed that the electrospun scaffold of DSM/PCL/PANi is biocompatible with favorable physical properties for the growth of stem cells and the expression of myogenic markers, which can be useful in the development of biological scaffold approaches for muscle tissue engineering.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.