Shreeja Lopchan Lama, Kyle Rafael Marcelino, Sumeth Wongkiew, K. C. Surendra, Zhen Hu, Jae Woo Lee, Samir Kumar Khanal
{"title":"Recent Advances in Aquaponic Systems: A Critical Review","authors":"Shreeja Lopchan Lama, Kyle Rafael Marcelino, Sumeth Wongkiew, K. C. Surendra, Zhen Hu, Jae Woo Lee, Samir Kumar Khanal","doi":"10.1111/raq.70029","DOIUrl":null,"url":null,"abstract":"<p>Aquaponics, a symbiotic farming of plants and fish, is a promising solution to address global food security. While aquaponics contributes to nutrient recovery, water reclamation, and reduced land and freshwater use, achieving consistent and economically viable production remains a substantial challenge. Several key issues in aquaponics include maintaining optimal water quality and dissolved oxygen concentration, delivering a balanced nutrient profile for plants, and managing solids accumulation. However, recent advances in new system designs, algal co-cultivation, micro-nanobubble technology, biofilter media, as well as system automation coupled with the Internet of Things, Artificial Intelligence, and robotics can improve the performance of these systems. Moreover, a greater understanding of the microbiome across various components of an aquaponic system is important in improving symbiotic relationships and supporting favorable ecological dynamics. This, in turn, promotes improved nutrient cycling, plant and fish growth, and overall system performance. This review highlights several such advances, critically analyzing the challenges faced during operation, and offers future research directions. Through discussion on current knowledge gaps in system operation, technological integration, and understanding of microbiomes, this review aims to provide a comprehensive framework for advancing aquaponic systems and outline potential directions for future innovations.</p>","PeriodicalId":227,"journal":{"name":"Reviews in Aquaculture","volume":"17 3","pages":""},"PeriodicalIF":8.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/raq.70029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Aquaculture","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/raq.70029","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Aquaponics, a symbiotic farming of plants and fish, is a promising solution to address global food security. While aquaponics contributes to nutrient recovery, water reclamation, and reduced land and freshwater use, achieving consistent and economically viable production remains a substantial challenge. Several key issues in aquaponics include maintaining optimal water quality and dissolved oxygen concentration, delivering a balanced nutrient profile for plants, and managing solids accumulation. However, recent advances in new system designs, algal co-cultivation, micro-nanobubble technology, biofilter media, as well as system automation coupled with the Internet of Things, Artificial Intelligence, and robotics can improve the performance of these systems. Moreover, a greater understanding of the microbiome across various components of an aquaponic system is important in improving symbiotic relationships and supporting favorable ecological dynamics. This, in turn, promotes improved nutrient cycling, plant and fish growth, and overall system performance. This review highlights several such advances, critically analyzing the challenges faced during operation, and offers future research directions. Through discussion on current knowledge gaps in system operation, technological integration, and understanding of microbiomes, this review aims to provide a comprehensive framework for advancing aquaponic systems and outline potential directions for future innovations.
期刊介绍:
Reviews in Aquaculture is a journal that aims to provide a platform for reviews on various aspects of aquaculture science, techniques, policies, and planning. The journal publishes fully peer-reviewed review articles on topics including global, regional, and national production and market trends in aquaculture, advancements in aquaculture practices and technology, interactions between aquaculture and the environment, indigenous and alien species in aquaculture, genetics and its relation to aquaculture, as well as aquaculture product quality and traceability. The journal is indexed and abstracted in several databases including AgBiotech News & Information (CABI), AgBiotechNet, Agricultural Engineering Abstracts, Environment Index (EBSCO Publishing), SCOPUS (Elsevier), and Web of Science (Clarivate Analytics) among others.