Global Photosynthesis Acclimates to Rising Temperatures Through Predictable Changes in Photosynthetic Capacities, Enzyme Kinetics, and Stomatal Sensitivity

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Pascal D. Schneider, Arthur Gessler, Benjamin D. Stocker
{"title":"Global Photosynthesis Acclimates to Rising Temperatures Through Predictable Changes in Photosynthetic Capacities, Enzyme Kinetics, and Stomatal Sensitivity","authors":"Pascal D. Schneider,&nbsp;Arthur Gessler,&nbsp;Benjamin D. Stocker","doi":"10.1029/2024MS004789","DOIUrl":null,"url":null,"abstract":"<p>Thermal acclimation of photosynthesis, the physiological adjustment to temperature over weeks, may help plants mitigate adverse impacts of global warming, but is often under-represented in Earth System Models (ESMs). We evaluated a plant functional type (PFT)-agnostic, optimality-based model of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>C</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{C}}_{3}$</annotation>\n </semantics></math> photosynthesis with a global data set of leaf gas exchange measurements. We investigated how three key photosynthesis traits vary along a gradient of growing-season temperatures <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>T</mi>\n <mtext>growth</mtext>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({T}_{\\text{growth}}\\right)$</annotation>\n </semantics></math>: optimal photosynthesis temperature <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>T</mi>\n <mtext>opt</mtext>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({T}_{\\text{opt}}\\right)$</annotation>\n </semantics></math>, net photosynthesis rate at <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mtext>opt</mtext>\n </msub>\n </mrow>\n <annotation> ${T}_{\\text{opt}}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>A</mi>\n <mtext>opt</mtext>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({A}_{\\text{opt}}\\right)$</annotation>\n </semantics></math>, and the width of the temperature response curve <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>T</mi>\n <mtext>span</mtext>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({T}_{\\text{span}}\\right)$</annotation>\n </semantics></math>. We analyzed how each trait is influenced by three acclimation processes: acclimation of photosynthetic capacities (carboxylation, electron transport, and respiration), their enzymatic responses, and stomatal sensitivity to vapor pressure deficit. The inclusion of all three acclimation processes was essential for reproducing observed patterns: a linear increase in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mtext>opt</mtext>\n </msub>\n </mrow>\n <annotation> ${T}_{\\text{opt}}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mtext>growth</mtext>\n </msub>\n </mrow>\n <annotation> ${T}_{\\text{growth}}$</annotation>\n </semantics></math>, and no correlations of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>A</mi>\n <mtext>opt</mtext>\n </msub>\n </mrow>\n <annotation> ${A}_{\\text{opt}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mtext>span</mtext>\n </msub>\n </mrow>\n <annotation> ${T}_{\\text{span}}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mtext>growth</mtext>\n </msub>\n </mrow>\n <annotation> ${T}_{\\text{growth}}$</annotation>\n </semantics></math>. Acclimation of enzymatic responses and stomatal sensitivity was crucial for accurately predicting <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mtext>opt</mtext>\n </msub>\n </mrow>\n <annotation> ${T}_{\\text{opt}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mtext>span</mtext>\n </msub>\n </mrow>\n <annotation> ${T}_{\\text{span}}$</annotation>\n </semantics></math>. Acclimation of the photosynthetic capacities was necessary to avoid a bias in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>A</mi>\n <mtext>opt</mtext>\n </msub>\n </mrow>\n <annotation> ${A}_{\\text{opt}}$</annotation>\n </semantics></math> that can arise when relying on static, PFT-specific parameters. Comparing a model with all and a model without any acclimation processes showed that thermal acclimation buffers the response of photosynthesis to warming substantially, leading to smaller increases in photosynthesis in cold climates (+2% instead of +18%) and smaller declines in warm climates (−4% instead of −22%). Our observations-constrained photosynthesis predictions suggest an important role of thermal acclimation in ESM, partly mitigating adverse effects of a warming climate.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004789","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004789","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal acclimation of photosynthesis, the physiological adjustment to temperature over weeks, may help plants mitigate adverse impacts of global warming, but is often under-represented in Earth System Models (ESMs). We evaluated a plant functional type (PFT)-agnostic, optimality-based model of C 3 ${\mathrm{C}}_{3}$ photosynthesis with a global data set of leaf gas exchange measurements. We investigated how three key photosynthesis traits vary along a gradient of growing-season temperatures T growth $\left({T}_{\text{growth}}\right)$ : optimal photosynthesis temperature T opt $\left({T}_{\text{opt}}\right)$ , net photosynthesis rate at T opt ${T}_{\text{opt}}$ A opt $\left({A}_{\text{opt}}\right)$ , and the width of the temperature response curve T span $\left({T}_{\text{span}}\right)$ . We analyzed how each trait is influenced by three acclimation processes: acclimation of photosynthetic capacities (carboxylation, electron transport, and respiration), their enzymatic responses, and stomatal sensitivity to vapor pressure deficit. The inclusion of all three acclimation processes was essential for reproducing observed patterns: a linear increase in T opt ${T}_{\text{opt}}$ with T growth ${T}_{\text{growth}}$ , and no correlations of A opt ${A}_{\text{opt}}$ and T span ${T}_{\text{span}}$ with T growth ${T}_{\text{growth}}$ . Acclimation of enzymatic responses and stomatal sensitivity was crucial for accurately predicting T opt ${T}_{\text{opt}}$ and T span ${T}_{\text{span}}$ . Acclimation of the photosynthetic capacities was necessary to avoid a bias in A opt ${A}_{\text{opt}}$ that can arise when relying on static, PFT-specific parameters. Comparing a model with all and a model without any acclimation processes showed that thermal acclimation buffers the response of photosynthesis to warming substantially, leading to smaller increases in photosynthesis in cold climates (+2% instead of +18%) and smaller declines in warm climates (−4% instead of −22%). Our observations-constrained photosynthesis predictions suggest an important role of thermal acclimation in ESM, partly mitigating adverse effects of a warming climate.

Abstract Image

全球光合作用通过可预测的光合能力、酶动力学和气孔敏感性变化来适应不断上升的温度
光合作用的热适应,即数周内对温度的生理调节,可能有助于植物减轻全球变暖的不利影响,但在地球系统模型(ESMs)中往往没有得到充分的体现。利用全球叶片气体交换测量数据集,对植物功能类型(PFT)不可知、基于最优性的c3 ${\ mathm {C}}_{3}$光合作用模型进行了评估。我们研究了三个关键的光合作用性状如何随着生长季节温度的梯度而变化T growth $\left({T}_{\text{growth}}\right)$:最佳光合作用温度T opt $\left({T}_{\text{opt}}\right)$,T下的净光合速率${T}_{\text{opt}}$ A opt $\left({A}_{\text{opt}}\right)$,温度响应曲线宽度T span $\left({T}_{\text{span}}\right)$。我们分析了每个性状如何受到三个驯化过程的影响:光合能力的驯化(羧基化、电子传递和呼吸)、它们的酶反应和气孔对蒸汽压缺陷的敏感性。包括所有三个适应过程对于再现观察到的模式是必不可少的:T opt ${T}_{\text{opt}}$随T增长${T}_{\text{growth}}$线性增加,A opt ${A}_{\text{opt}}$与T span ${T}_{\text{span}}$无相关性T增长${T}_{\文本{增长}}$。酶促反应的驯化和气孔敏感性是准确预测T opt ${T}_{\text{opt}}$和T span ${T}_{\text{span}}$的关键。​光合能力的驯化是必要的,以避免在a opt ${a}_{\text{opt}}$中产生的偏差,这种偏差可能依赖于静态的pft特定参数。与不进行任何驯化过程的模型相比,热驯化显著缓冲了光合作用对变暖的响应,导致寒冷气候下光合作用的小幅增加(+2%而不是+18%)和温暖气候下的小幅下降(- 4%而不是- 22%)。我们的观测受限的光合作用预测表明,热适应在ESM中发挥了重要作用,部分减轻了气候变暖的不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信