Effects of Environmentally Friendly Aquaculture Chamber Coatings on Enzyme Activities, Histology, and Transcriptome in the Liver of Larimichthys crocea
IF 2.6 3区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xuan Xu, Huayu Song, Huicai Wu, Lu Zhang, Fengjun Lin, Chonghui Chen, Xiaoxu Zhang, Yiying Liu, Chao Li, Qiang Fu
{"title":"Effects of Environmentally Friendly Aquaculture Chamber Coatings on Enzyme Activities, Histology, and Transcriptome in the Liver of Larimichthys crocea","authors":"Xuan Xu, Huayu Song, Huicai Wu, Lu Zhang, Fengjun Lin, Chonghui Chen, Xiaoxu Zhang, Yiying Liu, Chao Li, Qiang Fu","doi":"10.1007/s10126-025-10453-w","DOIUrl":null,"url":null,"abstract":"<div><p>Aquaculture vessels have emerged as a sustainable alternative to traditional offshore aquaculture. However, the biological impacts of protective coatings used for vessel interiors are still poorly understood. This study assessed acute stress responses of <i>Larimichthys crocea</i> to epoxy-based aquaculture coatings using actual culture (1-fold) and high-exposure (80-fold) concentrations. Liver analyses included antioxidant enzymes, histopathology, and transcriptomics over 12–96 h. Firstly, the effect of the 80-fold concentration group on the activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) was more significant in the liver of <i>L. crocea</i> compared to the 1-fold concentration group. Similarly, histological observations revealed that the 80-fold concentration group produced more significant pathological changes in the liver than the 1-fold concentration group, including hepatocyte damage and vacuolization. Subsequently, through high-throughput sequencing, a total of 714.02 million clean reads were obtained, with 693.71 million of these reads successfully mapped onto the reference genome of <i>L. crocea</i>, identifying 13,709 differentially expressed genes (DEGs). KEGG pathway enrichment analysis showed that many DEGs following coating-treated were involved in protein processing in endoplasmic reticulum, oxidative phosphorylation, cytokine-cytokine receptor interaction, FoxO signaling pathway, and toll-like receptor signaling pathway. Finally, fifteen DEGs were selected for quantitative real-time PCR (qRT-PCR) analysis, and the results showed a significant correlation with RNA-seq results, verifying the reliability and accuracy of the high-throughput sequencing data. This study preliminarily revealed the stress responses induced by aquaculture vessel coatings in <i>L. crocea</i> and provided fundamental data into the scientific use of coatings on aquaculture vessels.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-025-10453-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aquaculture vessels have emerged as a sustainable alternative to traditional offshore aquaculture. However, the biological impacts of protective coatings used for vessel interiors are still poorly understood. This study assessed acute stress responses of Larimichthys crocea to epoxy-based aquaculture coatings using actual culture (1-fold) and high-exposure (80-fold) concentrations. Liver analyses included antioxidant enzymes, histopathology, and transcriptomics over 12–96 h. Firstly, the effect of the 80-fold concentration group on the activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) was more significant in the liver of L. crocea compared to the 1-fold concentration group. Similarly, histological observations revealed that the 80-fold concentration group produced more significant pathological changes in the liver than the 1-fold concentration group, including hepatocyte damage and vacuolization. Subsequently, through high-throughput sequencing, a total of 714.02 million clean reads were obtained, with 693.71 million of these reads successfully mapped onto the reference genome of L. crocea, identifying 13,709 differentially expressed genes (DEGs). KEGG pathway enrichment analysis showed that many DEGs following coating-treated were involved in protein processing in endoplasmic reticulum, oxidative phosphorylation, cytokine-cytokine receptor interaction, FoxO signaling pathway, and toll-like receptor signaling pathway. Finally, fifteen DEGs were selected for quantitative real-time PCR (qRT-PCR) analysis, and the results showed a significant correlation with RNA-seq results, verifying the reliability and accuracy of the high-throughput sequencing data. This study preliminarily revealed the stress responses induced by aquaculture vessel coatings in L. crocea and provided fundamental data into the scientific use of coatings on aquaculture vessels.
期刊介绍:
Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.