Embedding groups into boundedly acyclic groups

IF 1 2区 数学 Q1 MATHEMATICS
Fan Wu, Xiaolei Wu, Mengfei Zhao, Zixiang Zhou
{"title":"Embedding groups into boundedly acyclic groups","authors":"Fan Wu,&nbsp;Xiaolei Wu,&nbsp;Mengfei Zhao,&nbsp;Zixiang Zhou","doi":"10.1112/jlms.70164","DOIUrl":null,"url":null,"abstract":"<p>We show that the <span></span><math>\n <semantics>\n <mi>ϕ</mi>\n <annotation>$\\phi$</annotation>\n </semantics></math>-labeled Thompson groups and the twisted Brin–Thompson groups are boundedly acyclic. This allows us to prove several new embedding results for groups. First, every group of type <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>n</mi>\n </msub>\n <annotation>$F_n$</annotation>\n </semantics></math> embeds quasi-isometrically into a boundedly acyclic group of type <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>n</mi>\n </msub>\n <annotation>$F_n$</annotation>\n </semantics></math> that has no proper finite index subgroups. This improves a result of Bridson and a theorem of Fournier-Facio–Löh–Moraschini. Second, every group of type <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>n</mi>\n </msub>\n <annotation>$F_n$</annotation>\n </semantics></math> embeds quasi-isometrically into a 5-uniformly perfect group of type <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>n</mi>\n </msub>\n <annotation>$F_n$</annotation>\n </semantics></math>. Third, using Belk–Zaremsky's construction of twisted Brin–Thompson groups, we show that every finitely generated group embeds quasi-isometrically into a finitely generated boundedly acyclic simple group. We also partially answer some questions of Brothier and Tanushevski regarding the finiteness property of <span></span><math>\n <semantics>\n <mi>ϕ</mi>\n <annotation>$\\phi$</annotation>\n </semantics></math>-labeled Thompson group <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mi>ϕ</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$V_\\phi (G)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mi>ϕ</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$F_\\phi (G)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70164","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the ϕ $\phi$ -labeled Thompson groups and the twisted Brin–Thompson groups are boundedly acyclic. This allows us to prove several new embedding results for groups. First, every group of type F n $F_n$ embeds quasi-isometrically into a boundedly acyclic group of type F n $F_n$ that has no proper finite index subgroups. This improves a result of Bridson and a theorem of Fournier-Facio–Löh–Moraschini. Second, every group of type F n $F_n$ embeds quasi-isometrically into a 5-uniformly perfect group of type F n $F_n$ . Third, using Belk–Zaremsky's construction of twisted Brin–Thompson groups, we show that every finitely generated group embeds quasi-isometrically into a finitely generated boundedly acyclic simple group. We also partially answer some questions of Brothier and Tanushevski regarding the finiteness property of ϕ $\phi$ -labeled Thompson group V ϕ ( G ) $V_\phi (G)$ and F ϕ ( G ) $F_\phi (G)$ .

将群嵌入有界无环群
我们证明了φ $\ φ $标记的Thompson群和扭曲的Brin-Thompson群是有界无环的。这使我们能够证明几个新的组嵌入结果。首先,每个F n$ F_n$型群拟等距嵌入到F n$ F_n$型有界无环群中,该群没有适当的有限索引子群。这改进了Bridson的结果和Fournier-Facio-Löh-Moraschini的一个定理。其次,每个fn $F_n$型群拟等距嵌入到fn $F_n$型的5-一致完美群中。第三,利用Belk-Zaremsky构造的扭曲Brin-Thompson群,证明了每一个有限生成群都准等距嵌入到一个有限生成有界无环简单群中。我们还部分回答了Brothier和Tanushevski关于φ $\phi$标记的Thompson群V φ (G)$ V_\phi (G)$和的有限性质的一些问题F φ (G)$ F_\ φ (G)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信