Optimizing Melt-Blowing Nozzles for Small-Diameter Fibers: An Artificial Neural Network Framework

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Ignacio Formoso
{"title":"Optimizing Melt-Blowing Nozzles for Small-Diameter Fibers: An Artificial Neural Network Framework","authors":"Ignacio Formoso","doi":"10.1007/s12221-025-00919-y","DOIUrl":null,"url":null,"abstract":"<p>In this study, two feedforward artificial neural networks (ANNs) were trained on experimental data to predict the melt-blowing (MB) fiber diameter of hot-melt adhesive and polypropylene fibers based on process operating conditions and nozzle geometry. These ANNs enabled a sensitivity analysis to investigate the effects of input parameters on the fiber drawing ratio. The results indicate that higher air–polymer flux ratios and extrusion temperatures, along with nozzles having an air impact point close to the nozzle exit and a low polymer-to-air area ratio, facilitate the production of small-diameter fibers. Furthermore, the ANNs incorporated a comprehensive set of input parameters characterizing the melt-blowing process and were trained using cross-validation and regularization techniques to enhance their generalization. This enabled the design of optimized nozzles for small-fiber production. Additionally, a nozzle design optimization framework based on ANNs is proposed to optimize new MB nozzles and enhance existing designs according to established industrial objectives and fiber compositions.</p>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 5","pages":"1933 - 1953"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-025-00919-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, two feedforward artificial neural networks (ANNs) were trained on experimental data to predict the melt-blowing (MB) fiber diameter of hot-melt adhesive and polypropylene fibers based on process operating conditions and nozzle geometry. These ANNs enabled a sensitivity analysis to investigate the effects of input parameters on the fiber drawing ratio. The results indicate that higher air–polymer flux ratios and extrusion temperatures, along with nozzles having an air impact point close to the nozzle exit and a low polymer-to-air area ratio, facilitate the production of small-diameter fibers. Furthermore, the ANNs incorporated a comprehensive set of input parameters characterizing the melt-blowing process and were trained using cross-validation and regularization techniques to enhance their generalization. This enabled the design of optimized nozzles for small-fiber production. Additionally, a nozzle design optimization framework based on ANNs is proposed to optimize new MB nozzles and enhance existing designs according to established industrial objectives and fiber compositions.

小直径纤维熔喷喷嘴优化:人工神经网络框架
在实验数据的基础上,对两个前馈人工神经网络(ann)进行训练,基于工艺操作条件和喷嘴几何形状预测热熔胶和聚丙烯纤维的熔吹(MB)纤维直径。这些人工神经网络能够进行灵敏度分析,以研究输入参数对纤维拉伸比的影响。结果表明,较高的空气-聚合物通量比和挤出温度,以及空气撞击点靠近喷嘴出口和较低的聚合物-空气面积比,有利于小直径纤维的生产。此外,人工神经网络结合了一套全面的输入参数来表征熔喷过程,并使用交叉验证和正则化技术进行训练,以增强其泛化能力。这使得设计出适合小纤维生产的优化喷嘴成为可能。此外,提出了一种基于人工神经网络的喷嘴设计优化框架,根据既定的工业目标和纤维成分,对新型MB喷嘴进行优化,并对现有设计进行改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信