Modeling and identification of residual stress fields in cylinders and plates

IF 1.9 4区 工程技术 Q3 MECHANICS
Rostislav Nedin, Alexander Vatulyan
{"title":"Modeling and identification of residual stress fields in cylinders and plates","authors":"Rostislav Nedin,&nbsp;Alexander Vatulyan","doi":"10.1007/s00161-025-01388-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, on the basis of the linearized model of prestressed elastic body, we propose approaches to studying coefficient inverse problems (IP) of 3 types on the prestress identification based on vibration sensing. We present techniques for reconstructing the nature of residual stress state (RSS) inhomogeneity, based on a combination of projection, iterative and finite element (FE) approaches. The fundamentals of the approach to analyzing a sensitivity of dynamic characteristics of elastic bodies to RSS type under various probing modes are discussed. A series of computational experiments is carried out to analyze the influence of RSS parameters and material inhomogeneity on the dynamic response and to reconstruct various types of 2D prestress fields in cylinders and plates. In addition, we present some recommendations for the implementation of the most effective modes of combined probing loading, providing the best reconstruction of RSS of various types in the studied objects.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"37 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-025-01388-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, on the basis of the linearized model of prestressed elastic body, we propose approaches to studying coefficient inverse problems (IP) of 3 types on the prestress identification based on vibration sensing. We present techniques for reconstructing the nature of residual stress state (RSS) inhomogeneity, based on a combination of projection, iterative and finite element (FE) approaches. The fundamentals of the approach to analyzing a sensitivity of dynamic characteristics of elastic bodies to RSS type under various probing modes are discussed. A series of computational experiments is carried out to analyze the influence of RSS parameters and material inhomogeneity on the dynamic response and to reconstruct various types of 2D prestress fields in cylinders and plates. In addition, we present some recommendations for the implementation of the most effective modes of combined probing loading, providing the best reconstruction of RSS of various types in the studied objects.

圆柱和板内残余应力场的建模与识别
本文在预应力弹性体线性化模型的基础上,提出了基于振动感知的3类预应力识别系数反问题的研究方法。我们提出了基于投影、迭代和有限元(FE)相结合的方法来重建残余应力状态(RSS)不均匀性的本质。讨论了弹性体在不同探测方式下对旋转导向类型的动态特性敏感性分析方法的基本原理。通过一系列的计算实验,分析了旋转导向参数和材料不均匀性对动力响应的影响,并重建了圆柱体和板体中各种类型的二维预应力场。此外,我们提出了一些实现最有效的组合探测加载模式的建议,以提供研究对象中各种类型的RSS的最佳重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
15.40%
发文量
92
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena. Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信