Mohamed Ahmed Belal, Sugato Hajra, Swati Panda, Kushal Ruthvik Kaja, Kyeong Jun Park, Runia Jana, P. Ganga Raju Achary, Hoe Joon Kim
{"title":"Functionalized MWCNTs@ZnO nanocomposites via spray printing for NO2 gas sensing","authors":"Mohamed Ahmed Belal, Sugato Hajra, Swati Panda, Kushal Ruthvik Kaja, Kyeong Jun Park, Runia Jana, P. Ganga Raju Achary, Hoe Joon Kim","doi":"10.1007/s10854-025-14663-9","DOIUrl":null,"url":null,"abstract":"<div><p>The accurate and timely detection of nitrogen dioxide gas (NO<sub>2</sub>) is of utmost relevance in environmental monitoring and industrial applications. This study examines the process of functionalizing multi-walled carbon nanotubes (FMWCNTs) by treating them with a combination of sulfuric acid and nitric acid. The proposed treatment method improves the chemical reactivity of carbon nanotubes by the addition of hydroxyl and carboxylic functional groups. The FMWCNTs combined with zinc oxide (ZnO) are synthesized via a hydrothermal process, forming FMWCNTs@ZnO composites. The synthesized materials underwent various material characterizations. The composites are then printed over a silicon wafer substrate with lithographically patterned interdigitated electrodes in a square shape. 10 mg FMWCNTs in Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O (CNTZ2) showed the best gas-sensing capability. The sensor exhibits good gas response and fast response/recovery times at room temperature (RT) with values of 80% and 131/156 s at 100 ppm, respectively, as well as lifetime testing for 40 days. The spray printing method is simple and economical which can be utilized for coating on various substrates. Moreover, the proposed functionalization process allows good gas-sensing properties even at RT. This work paves the way towards new opportunities and fostering an optimistic outlook for the future of gas-sensing technology.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 12","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14663-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate and timely detection of nitrogen dioxide gas (NO2) is of utmost relevance in environmental monitoring and industrial applications. This study examines the process of functionalizing multi-walled carbon nanotubes (FMWCNTs) by treating them with a combination of sulfuric acid and nitric acid. The proposed treatment method improves the chemical reactivity of carbon nanotubes by the addition of hydroxyl and carboxylic functional groups. The FMWCNTs combined with zinc oxide (ZnO) are synthesized via a hydrothermal process, forming FMWCNTs@ZnO composites. The synthesized materials underwent various material characterizations. The composites are then printed over a silicon wafer substrate with lithographically patterned interdigitated electrodes in a square shape. 10 mg FMWCNTs in Zn(NO3)2·6H2O (CNTZ2) showed the best gas-sensing capability. The sensor exhibits good gas response and fast response/recovery times at room temperature (RT) with values of 80% and 131/156 s at 100 ppm, respectively, as well as lifetime testing for 40 days. The spray printing method is simple and economical which can be utilized for coating on various substrates. Moreover, the proposed functionalization process allows good gas-sensing properties even at RT. This work paves the way towards new opportunities and fostering an optimistic outlook for the future of gas-sensing technology.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.