Tailored syngas production from Bio-Oil with CO2 Valorization: A thermodynamic approach of coupled steam and dry reforming units

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Beatriz Valle, Leire Landa, José Valecillos, Aingeru Remiro, Ana G. Gayubo
{"title":"Tailored syngas production from Bio-Oil with CO2 Valorization: A thermodynamic approach of coupled steam and dry reforming units","authors":"Beatriz Valle,&nbsp;Leire Landa,&nbsp;José Valecillos,&nbsp;Aingeru Remiro,&nbsp;Ana G. Gayubo","doi":"10.1016/j.enconman.2025.119830","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores a novel thermodynamic approach for syngas production from bio-oil by coupling steam reforming (SR) and dry reforming (DR) units. The proposed strategy minimizes CO<sub>2</sub> emissions compared to conventional SR by utilizing CO<sub>2</sub> as a reactant, enhancing process sustainability while enabling the production of syngas with customizable H<sub>2</sub>/CO ratios. Thermodynamic calculations conducted with AVEVA Pro/II software demonstrate that the coupled (SR+DR) configuration allows independent optimization of SR and DR unit conditions, including temperature and bio-oil feed distribution. This flexibility facilitates tailored syngas compositions for industrial applications such as Fischer-Tropsch synthesis, methanation, methanol production, and ammonia synthesis. For a target H<sub>2</sub>/CO ratio of 2, the optimal (1 SR+1 DR) configuration achieved syngas yields of 89–95 % and CO<sub>2</sub> conversion in the DR unit of 24–31 %. For a target H<sub>2</sub>/CO ratio of 3, the (1.5 SR+0.5 DR) configuration demonstrated higher syngas yields (92–94 %), although at the expense of lower CO<sub>2</sub> conversion (14–17 %). Moreover, compared to conventional SR, the coupled SR+DR strategy achieves reductions in CO<sub>2</sub> emissions up to 66 % for syngas with an H<sub>2</sub>/CO ratio of 2 and 38 % for an H<sub>2</sub>/CO ratio of 3. The results position the coupled (SR+DR) strategy as a sustainable and energy-efficient alternative for bio-oil valorization, paving the way for carbon–neutral syngas production and its potential industrial implementation.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"334 ","pages":"Article 119830"},"PeriodicalIF":9.9000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019689042500353X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores a novel thermodynamic approach for syngas production from bio-oil by coupling steam reforming (SR) and dry reforming (DR) units. The proposed strategy minimizes CO2 emissions compared to conventional SR by utilizing CO2 as a reactant, enhancing process sustainability while enabling the production of syngas with customizable H2/CO ratios. Thermodynamic calculations conducted with AVEVA Pro/II software demonstrate that the coupled (SR+DR) configuration allows independent optimization of SR and DR unit conditions, including temperature and bio-oil feed distribution. This flexibility facilitates tailored syngas compositions for industrial applications such as Fischer-Tropsch synthesis, methanation, methanol production, and ammonia synthesis. For a target H2/CO ratio of 2, the optimal (1 SR+1 DR) configuration achieved syngas yields of 89–95 % and CO2 conversion in the DR unit of 24–31 %. For a target H2/CO ratio of 3, the (1.5 SR+0.5 DR) configuration demonstrated higher syngas yields (92–94 %), although at the expense of lower CO2 conversion (14–17 %). Moreover, compared to conventional SR, the coupled SR+DR strategy achieves reductions in CO2 emissions up to 66 % for syngas with an H2/CO ratio of 2 and 38 % for an H2/CO ratio of 3. The results position the coupled (SR+DR) strategy as a sustainable and energy-efficient alternative for bio-oil valorization, paving the way for carbon–neutral syngas production and its potential industrial implementation.

Abstract Image

生物油的定制合成气生产与二氧化碳增值:耦合蒸汽和干重整装置的热力学方法
本研究探索了一种通过蒸汽重整(SR)和干重整(DR)装置耦合的生物油制合成气的新的热力学方法。与传统SR相比,该策略通过利用二氧化碳作为反应物,最大限度地减少二氧化碳排放,提高工艺的可持续性,同时使合成气的生产具有可定制的H2/CO比。利用AVEVA Pro/II软件进行的热力学计算表明,耦合(SR+DR)配置可以独立优化SR和DR单元条件,包括温度和生物油的饲料分布。这种灵活性有助于为工业应用量身定制合成气成分,如费托合成、甲烷化、甲醇生产和氨合成。当H2/CO比为2时,最佳配置(1 SR+1 DR)的合成气产率为89 - 95%,DR装置的CO2转化率为24 - 31%。当目标H2/CO比为3时,(1.5 SR+0.5 DR)配置显示出更高的合成气产率(92% - 94%),但代价是CO2转化率较低(14 - 17%)。此外,与传统的SR相比,耦合SR+DR策略在H2/CO比为2的合成气中可减少高达66%的二氧化碳排放,在H2/CO比为3的合成气中可减少38%的二氧化碳排放。结果表明,耦合(SR+DR)策略是生物油增值的可持续和节能替代方案,为碳中和合成气生产及其潜在的工业应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信