Huijun Li , Yawei Fan , Chan Chen , Yuzhong Xu , Xiong Wang , Wei Liu
{"title":"Identification of GABBR2 as a diagnostic marker and its association with Aβ in Alzheimer's disease","authors":"Huijun Li , Yawei Fan , Chan Chen , Yuzhong Xu , Xiong Wang , Wei Liu","doi":"10.1016/j.bbrep.2025.102035","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Synaptic dysfunction and synapse loss occur in Alzheimer's disease (AD). The current study aimed to identify synaptic-related genes with diagnostic potential for AD.</div></div><div><h3>Methods</h3><div>Differentially expressed genes (DEGs) were overlapped with phenotype-associated module selected through weighted gene co-expression network analysis (WGCNA), and synaptic-related genes. The overlapped hub genes were further processed using machine learning algorithms, intersected with module gene from protein-protein interaction (PPI) network constructed with DEGs, to yield co-hub genes. The diagnostic potentials of the co-hub genes were examined by receiver operating characteristic (ROC) analysis. Correlation between co-hub genes with clinical features and immune cell infiltration was analyzed. Finally, the expression of co-hub genes was analyzed in several datasets and validated in AD transgenic mice.</div></div><div><h3>Results</h3><div>A total of three co-hub genes were identified, including MAP1B, L1CAM, and GABBR2. GABBR2 showed area under the curve (AUC) values of 0.98, 0.81, and 0.88 in the training and two external validation datasets. GABBR2 was negatively correlate with beta- and gamma-secretase activities, and infiltration of natural killer T cells and effector memory CD8 T cells. Finally, GABBR2 was validated to be downregulated in AD transgenic mice, aligning with bioinformatic findings. GABBR2 overexpression in N2a/APP cells increased ADAM10 while decreased of BACE1, leading to upregulation of sAPPα while downregulation of sAPPβ.</div></div><div><h3>Conclusion</h3><div>In conclusion, GABBR2 acts as a novel biomarker for the diagnosis of AD and negatively correlated with Aβ in AD.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"42 ","pages":"Article 102035"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825001220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Synaptic dysfunction and synapse loss occur in Alzheimer's disease (AD). The current study aimed to identify synaptic-related genes with diagnostic potential for AD.
Methods
Differentially expressed genes (DEGs) were overlapped with phenotype-associated module selected through weighted gene co-expression network analysis (WGCNA), and synaptic-related genes. The overlapped hub genes were further processed using machine learning algorithms, intersected with module gene from protein-protein interaction (PPI) network constructed with DEGs, to yield co-hub genes. The diagnostic potentials of the co-hub genes were examined by receiver operating characteristic (ROC) analysis. Correlation between co-hub genes with clinical features and immune cell infiltration was analyzed. Finally, the expression of co-hub genes was analyzed in several datasets and validated in AD transgenic mice.
Results
A total of three co-hub genes were identified, including MAP1B, L1CAM, and GABBR2. GABBR2 showed area under the curve (AUC) values of 0.98, 0.81, and 0.88 in the training and two external validation datasets. GABBR2 was negatively correlate with beta- and gamma-secretase activities, and infiltration of natural killer T cells and effector memory CD8 T cells. Finally, GABBR2 was validated to be downregulated in AD transgenic mice, aligning with bioinformatic findings. GABBR2 overexpression in N2a/APP cells increased ADAM10 while decreased of BACE1, leading to upregulation of sAPPα while downregulation of sAPPβ.
Conclusion
In conclusion, GABBR2 acts as a novel biomarker for the diagnosis of AD and negatively correlated with Aβ in AD.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.