{"title":"A complete monotonicity theorem related to Fink's inequality with applications","authors":"Zhen-Hang Yang","doi":"10.1016/j.jmaa.2025.129600","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>F</em> be a completely monotonic function on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><msup><mrow><mi>F</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span> for <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. Fink in 1982 proved the inequality<span><span><span><math><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≤</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span></span></span>for <span><math><mi>x</mi><mo>></mo><mn>0</mn></math></span>, where <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow></math></span> and <span><math><msub><mrow><mi>q</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>k</mi></mrow></msubsup></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> satisfy <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub><mo>≺</mo><msub><mrow><mi>q</mi></mrow><mrow><mo>[</mo><mi>k</mi><mo>]</mo></mrow></msub></math></span>. Inspired by Fink's inequality, we further give the sufficient conditions for the function<span><span><span><math><mi>x</mi><mo>↦</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msub><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></math></span></span></span>to be completely monotonic on <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. Applying this result, we reprove the complete monotonicity involving polygamma functions, and present some new consequences involving Nielsen's beta function and confluent hypergeometric function of the second kind.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129600"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003816","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let F be a completely monotonic function on and for . Fink in 1982 proved the inequalityfor , where and for satisfy . Inspired by Fink's inequality, we further give the sufficient conditions for the functionto be completely monotonic on . Applying this result, we reprove the complete monotonicity involving polygamma functions, and present some new consequences involving Nielsen's beta function and confluent hypergeometric function of the second kind.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.