Jiahua Li , Shiwan Chen , Ruyun Wu , Yuhang Zhu , Senyou An
{"title":"A novel semi-theoretical model for hydraulic conductivity prediction considering temperature effect","authors":"Jiahua Li , Shiwan Chen , Ruyun Wu , Yuhang Zhu , Senyou An","doi":"10.1016/j.csite.2025.106188","DOIUrl":null,"url":null,"abstract":"<div><div>It is of great significance to accurately characterize fluid migration within fractures under thermal-mechanical coupling condition for deep ground engineering, especially for the nuclear waste disposal engineering. Previous efforts characterizing hydraulic properties of fractures have focused on room temperature, and it is difficult to deep understand the deformation-seepage coupling process of rock fractures under temperature. Thus, models derived from in this condition have been limited in their predictive ability for fracture seepage. This paper addresses the key challenge through well-designed experiments, combined with the improved BB model and the cubic law. The fracture deformation was separated from single-fractured granite during normal cyclic loading. The deformation and hydraulic properties of granite fractures under thermal-mechanical coupling were analyzed in detail. A linear relationship between hydraulic aperture and mechanical aperture considering temperature effect is established. A stress-deformation-seepage model considering temperature and cyclic loading history effect is proposed, and the accuracy of the model is verified. This study can provide reference for nuclear waste geological disposal project.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"71 ","pages":"Article 106188"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25004484","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is of great significance to accurately characterize fluid migration within fractures under thermal-mechanical coupling condition for deep ground engineering, especially for the nuclear waste disposal engineering. Previous efforts characterizing hydraulic properties of fractures have focused on room temperature, and it is difficult to deep understand the deformation-seepage coupling process of rock fractures under temperature. Thus, models derived from in this condition have been limited in their predictive ability for fracture seepage. This paper addresses the key challenge through well-designed experiments, combined with the improved BB model and the cubic law. The fracture deformation was separated from single-fractured granite during normal cyclic loading. The deformation and hydraulic properties of granite fractures under thermal-mechanical coupling were analyzed in detail. A linear relationship between hydraulic aperture and mechanical aperture considering temperature effect is established. A stress-deformation-seepage model considering temperature and cyclic loading history effect is proposed, and the accuracy of the model is verified. This study can provide reference for nuclear waste geological disposal project.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.