Zulfi Haneef , Stephan Eisenschenk , Maria R. Lopez , Andrea Hildebrand , Rizwana Rehman , Sruthi Gopinath Karicheri , Marcella A. Coutts , Omar I. Khan , Marissa Kellogg , for the Veterans Epilepsy Learning, Collaborative Research, and Operations (VELCRO) investigators
{"title":"Optimizing drug-resistant epilepsy identification in the Veterans Health Administration","authors":"Zulfi Haneef , Stephan Eisenschenk , Maria R. Lopez , Andrea Hildebrand , Rizwana Rehman , Sruthi Gopinath Karicheri , Marcella A. Coutts , Omar I. Khan , Marissa Kellogg , for the Veterans Epilepsy Learning, Collaborative Research, and Operations (VELCRO) investigators","doi":"10.1016/j.eplepsyres.2025.107568","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Accurate identification of drug-resistant epilepsy (DRE) is crucial for accurate disease measurement, effective clinical intervention and improved patient outcomes. Prior attempts to define DRE in administrative data using the 2010 International League against Epilepsy (ILAE) criteria have faced complexities.</div></div><div><h3>Methods</h3><div>This retrospective study utilized national administrative data from the Veterans Health Administration (VHA) to identify patients with possible DRE. This was a multicenter national cohort that uses a common, non-commercial medical record system. A panel of six epileptologists conducted chart reviews to identify DRE using the 2010 ILAE criteria. Logistic regression was used to analyze epilepsy-related variables of interest to develop algorithms identifying DRE.</div></div><div><h3>Results</h3><div>Among 260 included patients, 93 (35.8 %) had DRE, 148 (56.9 %) did not have DRE, and 19 (7.3 %) were undetermined. Out of 96 algorithms assessed, the best-performing algorithm had a high accuracy (F1 score=0.726) and defined DRE as those on ≥ 3 ASMs in addition to those on ≥ 2 ASMs for ≥ 365 days with at least one intractable ICD code. The algorithm demonstrated high sensitivity (0.74), specificity (0.81), and area under the curve (AUC 0.78). Factors such as age, number of ASMs, EEG, and MRI procedures, and intractable epilepsy ICD codes were associated with DRE.</div></div><div><h3>Discussion</h3><div>Our optimal algorithm for DRE identification is like previously published algorithms that determined the importance of number and duration of ASMs. However, it differs in the particular combination of factors that best identified DRE. These differences highlight the importance of fine-tuning algorithms for specific care settings. Further validation in a larger, more heterogenous cohort are needed to determine our algorithm's applicability and potential impact.</div></div>","PeriodicalId":11914,"journal":{"name":"Epilepsy Research","volume":"214 ","pages":"Article 107568"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920121125000695","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Accurate identification of drug-resistant epilepsy (DRE) is crucial for accurate disease measurement, effective clinical intervention and improved patient outcomes. Prior attempts to define DRE in administrative data using the 2010 International League against Epilepsy (ILAE) criteria have faced complexities.
Methods
This retrospective study utilized national administrative data from the Veterans Health Administration (VHA) to identify patients with possible DRE. This was a multicenter national cohort that uses a common, non-commercial medical record system. A panel of six epileptologists conducted chart reviews to identify DRE using the 2010 ILAE criteria. Logistic regression was used to analyze epilepsy-related variables of interest to develop algorithms identifying DRE.
Results
Among 260 included patients, 93 (35.8 %) had DRE, 148 (56.9 %) did not have DRE, and 19 (7.3 %) were undetermined. Out of 96 algorithms assessed, the best-performing algorithm had a high accuracy (F1 score=0.726) and defined DRE as those on ≥ 3 ASMs in addition to those on ≥ 2 ASMs for ≥ 365 days with at least one intractable ICD code. The algorithm demonstrated high sensitivity (0.74), specificity (0.81), and area under the curve (AUC 0.78). Factors such as age, number of ASMs, EEG, and MRI procedures, and intractable epilepsy ICD codes were associated with DRE.
Discussion
Our optimal algorithm for DRE identification is like previously published algorithms that determined the importance of number and duration of ASMs. However, it differs in the particular combination of factors that best identified DRE. These differences highlight the importance of fine-tuning algorithms for specific care settings. Further validation in a larger, more heterogenous cohort are needed to determine our algorithm's applicability and potential impact.
期刊介绍:
Epilepsy Research provides for publication of high quality articles in both basic and clinical epilepsy research, with a special emphasis on translational research that ultimately relates to epilepsy as a human condition. The journal is intended to provide a forum for reporting the best and most rigorous epilepsy research from all disciplines ranging from biophysics and molecular biology to epidemiological and psychosocial research. As such the journal will publish original papers relevant to epilepsy from any scientific discipline and also studies of a multidisciplinary nature. Clinical and experimental research papers adopting fresh conceptual approaches to the study of epilepsy and its treatment are encouraged. The overriding criteria for publication are novelty, significant clinical or experimental relevance, and interest to a multidisciplinary audience in the broad arena of epilepsy. Review articles focused on any topic of epilepsy research will also be considered, but only if they present an exceptionally clear synthesis of current knowledge and future directions of a research area, based on a critical assessment of the available data or on hypotheses that are likely to stimulate more critical thinking and further advances in an area of epilepsy research.