Anchal Bhatia , Shimple Thakur , Rupali Kohal , Seema Brar , Ghanshyam Das Gupta , Sant Kumar Verma
{"title":"A comprehensive update on phytochemistry and medicinal developments of apocynin","authors":"Anchal Bhatia , Shimple Thakur , Rupali Kohal , Seema Brar , Ghanshyam Das Gupta , Sant Kumar Verma","doi":"10.1016/j.fitote.2025.106558","DOIUrl":null,"url":null,"abstract":"<div><div>The natural phenolic compound apocynin, referred to as acetovanillone, generated significant attention due to its diverse pharmacological properties, especially as an NADPH oxidase inhibitor, and it was applicable orally and effectively even at small doses. During chronic inflammation, various pro-inflammatory-related factors such as nuclear factor kappa β (NF-kβ), nitrotyrosine, poly adenosine diphosphate ribose polymerase (PARP), inducible nitric oxide synthase (iNOS), cluster of differentiation 31 (CD<sub>31</sub>), intercellular adhesion molecule-1 (ICAM-1), glycoproteins granule membrane protein 140 (GMP140), tumor necrosis factor-alpha (TNFα), p38 mitogen-activated protein kinases (p38 MAPK), membrane cofactor protein (MCP), interleukin-6 (IL-6), all of which could be targeted by apocynin. Research suggests that apocynin significantly benefits conditions like diabetes, cardiovascular diseases, and neurological disorders due to its ability to mitigate inflammation and enhance endothelial function. Further investigations are essential to examine apocynin and its derivatives, mainly its long-term potency. Future research must focus on clinical trials to evaluate its safety, effectiveness, and optimal dosing in various applications. This review provides a recent update on apocynin, covering aspects such as its extraction and isolation, chemical framework, biosynthesis, synthetic derivatives, pharmacological activities, patent landscape, stability and specifications.</div></div>","PeriodicalId":12147,"journal":{"name":"Fitoterapia","volume":"183 ","pages":"Article 106558"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fitoterapia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0367326X25001832","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The natural phenolic compound apocynin, referred to as acetovanillone, generated significant attention due to its diverse pharmacological properties, especially as an NADPH oxidase inhibitor, and it was applicable orally and effectively even at small doses. During chronic inflammation, various pro-inflammatory-related factors such as nuclear factor kappa β (NF-kβ), nitrotyrosine, poly adenosine diphosphate ribose polymerase (PARP), inducible nitric oxide synthase (iNOS), cluster of differentiation 31 (CD31), intercellular adhesion molecule-1 (ICAM-1), glycoproteins granule membrane protein 140 (GMP140), tumor necrosis factor-alpha (TNFα), p38 mitogen-activated protein kinases (p38 MAPK), membrane cofactor protein (MCP), interleukin-6 (IL-6), all of which could be targeted by apocynin. Research suggests that apocynin significantly benefits conditions like diabetes, cardiovascular diseases, and neurological disorders due to its ability to mitigate inflammation and enhance endothelial function. Further investigations are essential to examine apocynin and its derivatives, mainly its long-term potency. Future research must focus on clinical trials to evaluate its safety, effectiveness, and optimal dosing in various applications. This review provides a recent update on apocynin, covering aspects such as its extraction and isolation, chemical framework, biosynthesis, synthetic derivatives, pharmacological activities, patent landscape, stability and specifications.
期刊介绍:
Fitoterapia is a Journal dedicated to medicinal plants and to bioactive natural products of plant origin. It publishes original contributions in seven major areas:
1. Characterization of active ingredients of medicinal plants
2. Development of standardization method for bioactive plant extracts and natural products
3. Identification of bioactivity in plant extracts
4. Identification of targets and mechanism of activity of plant extracts
5. Production and genomic characterization of medicinal plants biomass
6. Chemistry and biochemistry of bioactive natural products of plant origin
7. Critical reviews of the historical, clinical and legal status of medicinal plants, and accounts on topical issues.