Hao Shi, Yunshu Wu, Lei Wang, Zhenyu Song, Yuze Lv, Baiyan Cai
{"title":"Harnessing AMF for tetracycline pollution remediation: Insights from the remodeling of hyphosphere soil bacterial communities","authors":"Hao Shi, Yunshu Wu, Lei Wang, Zhenyu Song, Yuze Lv, Baiyan Cai","doi":"10.1016/j.apsoil.2025.106138","DOIUrl":null,"url":null,"abstract":"<div><div>Tetracycline (TC) is effectively used antibiotic in animal husbandry and healthcare, has damaged soil ecosystems due to its misuse and residues in the soil environment. Therefore, the main objective of this study was to abate TC in hyphosphere soil by inoculating soil with arbuscular mycorrhizal fungi (AMF) and to explore its potential mechanisms. The results showed that under TC stress, inoculation with AMF reduced the contents of soil organic carbon and total nitrogen, and increased the activities of β-glucosidase and urease in hyphosphere soil. The relative abundance of bacterial genera such as <em>Pseudomaricurvus</em> in the hyphosphere soil increased significantly after AMF inoculation. In addition, four bacterial genera, <em>Cellulosimicrobium</em>, <em>Roseibium</em>, <em>Citromicrobium</em>, and <em>Hephaestia</em>, were uniquely present in AMF-inoculated soil, and the functional genes <em>Unigene456231</em> and <em>Unigene565663</em> were significantly enriched in the hyphosphere soil. This suggests that the reshaping of the bacterial community and the enrichment of functional genes in the hyphosphere soil led to changes in the bacterial community’s functions, which promoted the gradual abatement of residual TC in the soil. It should be noted that this study was solely based on a single pot experiment, and its conclusions may have certain limitations in broader ecological application scenarios. Subsequent studies will further investigate the remediation effects under different environmental factors and field trials. This study provides new insights into the use of AMF as a biological agent for the remediation of TC-contaminated soils, offering new perspectives for promoting sustainable agricultural development.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"211 ","pages":"Article 106138"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139325002768","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Tetracycline (TC) is effectively used antibiotic in animal husbandry and healthcare, has damaged soil ecosystems due to its misuse and residues in the soil environment. Therefore, the main objective of this study was to abate TC in hyphosphere soil by inoculating soil with arbuscular mycorrhizal fungi (AMF) and to explore its potential mechanisms. The results showed that under TC stress, inoculation with AMF reduced the contents of soil organic carbon and total nitrogen, and increased the activities of β-glucosidase and urease in hyphosphere soil. The relative abundance of bacterial genera such as Pseudomaricurvus in the hyphosphere soil increased significantly after AMF inoculation. In addition, four bacterial genera, Cellulosimicrobium, Roseibium, Citromicrobium, and Hephaestia, were uniquely present in AMF-inoculated soil, and the functional genes Unigene456231 and Unigene565663 were significantly enriched in the hyphosphere soil. This suggests that the reshaping of the bacterial community and the enrichment of functional genes in the hyphosphere soil led to changes in the bacterial community’s functions, which promoted the gradual abatement of residual TC in the soil. It should be noted that this study was solely based on a single pot experiment, and its conclusions may have certain limitations in broader ecological application scenarios. Subsequent studies will further investigate the remediation effects under different environmental factors and field trials. This study provides new insights into the use of AMF as a biological agent for the remediation of TC-contaminated soils, offering new perspectives for promoting sustainable agricultural development.
期刊介绍:
Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.