Chunlin Wang , Minghui Ma , Yanhe Li , Jiewen Deng , Hao Fang
{"title":"Optimization and feasibility analysis of waste heat recovery procedures in copper plant based on the collaborative analysis of T-Q-C diagram","authors":"Chunlin Wang , Minghui Ma , Yanhe Li , Jiewen Deng , Hao Fang","doi":"10.1016/j.energy.2025.136330","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the critical challenge of reducing energy consumption and CO<sub>2</sub> emissions in China's space heating sector by exploring industrial waste heat recovery in a copper smelter in Chifeng City. Traditional heating systems rely heavily on fossil fuels, contributing to 4 % of national energy consumption. The research proposes a novel T-Q-C diagram model, integrating temperature, heat, and carbon emission indices, to optimize waste heat utilization. Three innovative schemes are compared with the existing process: Scheme B (absorption heat pump-based full recovery), Scheme C (terminal large-temperature-difference recovery), and Scheme D (integrated recovery). The waste heat potential (369 MW) of copper plant is analyzed, with current recovery at 212 MW (57.46 % efficiency) and CO<sub>2</sub> emissions of 60.6 tons/MW·a. Scheme B achieves full recovery (369 MW) but lowers supply water temperature (53.4 °C) and reduces emissions to 49.2 tons/MW·a. Scheme C increases supply water temperature (69.9 °C) but recovers 93 % waste heat (344 MW) with emissions of 50.2 tons/MW·a. Scheme D combines the advantages of B and C, achieving full recovery (369 MW), higher supply water temperature (73.5 °C), and the lowest emissions (49.2 tons/MW·a). Economic analysis reveals Scheme D has the highest initial cost but optimal performance in heat recovery, temperature, and CO<sub>2</sub> emissions. The T-Q-C model proves effective in balancing technical, economic, and environmental factors, highlighting the potential of integrated technologies to advance sustainable urban heating under China's carbon neutrality goals.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"326 ","pages":"Article 136330"},"PeriodicalIF":9.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225019723","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the critical challenge of reducing energy consumption and CO2 emissions in China's space heating sector by exploring industrial waste heat recovery in a copper smelter in Chifeng City. Traditional heating systems rely heavily on fossil fuels, contributing to 4 % of national energy consumption. The research proposes a novel T-Q-C diagram model, integrating temperature, heat, and carbon emission indices, to optimize waste heat utilization. Three innovative schemes are compared with the existing process: Scheme B (absorption heat pump-based full recovery), Scheme C (terminal large-temperature-difference recovery), and Scheme D (integrated recovery). The waste heat potential (369 MW) of copper plant is analyzed, with current recovery at 212 MW (57.46 % efficiency) and CO2 emissions of 60.6 tons/MW·a. Scheme B achieves full recovery (369 MW) but lowers supply water temperature (53.4 °C) and reduces emissions to 49.2 tons/MW·a. Scheme C increases supply water temperature (69.9 °C) but recovers 93 % waste heat (344 MW) with emissions of 50.2 tons/MW·a. Scheme D combines the advantages of B and C, achieving full recovery (369 MW), higher supply water temperature (73.5 °C), and the lowest emissions (49.2 tons/MW·a). Economic analysis reveals Scheme D has the highest initial cost but optimal performance in heat recovery, temperature, and CO2 emissions. The T-Q-C model proves effective in balancing technical, economic, and environmental factors, highlighting the potential of integrated technologies to advance sustainable urban heating under China's carbon neutrality goals.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.