Zhang Wen , Yu-Hua Wei , Da-Yong Han , Liang Song , Hai-Yan Zhu , Liang-Chen Guo , Shen-Xi Chen , Bin Lin , Chao-Jiu He , Zheng-Xiang Guo , Pei-Jie Han , Feng-Yan Bai
{"title":"Deciphering the role of traditional flipping crafts in medium-temperature Daqu fermentation: Microbial succession and metabolic phenotypes","authors":"Zhang Wen , Yu-Hua Wei , Da-Yong Han , Liang Song , Hai-Yan Zhu , Liang-Chen Guo , Shen-Xi Chen , Bin Lin , Chao-Jiu He , Zheng-Xiang Guo , Pei-Jie Han , Feng-Yan Bai","doi":"10.1016/j.crfs.2025.101063","DOIUrl":null,"url":null,"abstract":"<div><div>Medium-temperature Daqu (MTD) serves as the saccharification and fermentation starter for Nongxiangxing Baijiu. Flipping Daqu (FD) during fermentation is a key craft in traditional MTD preparation. However, the mechanism underlying this flipping craft remains unclear. To address this, we systematically compared FD with non-flipping Daqu (NFD) to elucidate microbial succession dynamics, metabolic phenotypes, and environmental drivers. Our results demonstrated divergent microbial community succession patterns between FD and NFD during the stable fermentation phase (days 9–25). FD exhibited significantly higher enzyme activities and volatile ketone content, along with lower core temperatures compared to NFD. Metabolite production in FD was influenced by both bacteria and fungi, whereas fungi predominantly controlled metabolite production in NFD. Co-occurrence network analysis revealed that the microbial community in FD was simpler yet more stable compared to that in NFD. Microbial succession in MTD was primarily driven by interspecies interactions and environmental factors. Furthermore, deterministic processes and stochastic processes jointly governed microbial assembly both FD and NFD, with temperature, moisture, and acidity as the key driving factors. These findings highlight the pivotal role of the flipping crafts in enhancing microbial functionality and metabolic diversity, offering a theoretical basis for optimizing MTD production and advancing intelligent fermentation systems.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 101063"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927125000942","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Medium-temperature Daqu (MTD) serves as the saccharification and fermentation starter for Nongxiangxing Baijiu. Flipping Daqu (FD) during fermentation is a key craft in traditional MTD preparation. However, the mechanism underlying this flipping craft remains unclear. To address this, we systematically compared FD with non-flipping Daqu (NFD) to elucidate microbial succession dynamics, metabolic phenotypes, and environmental drivers. Our results demonstrated divergent microbial community succession patterns between FD and NFD during the stable fermentation phase (days 9–25). FD exhibited significantly higher enzyme activities and volatile ketone content, along with lower core temperatures compared to NFD. Metabolite production in FD was influenced by both bacteria and fungi, whereas fungi predominantly controlled metabolite production in NFD. Co-occurrence network analysis revealed that the microbial community in FD was simpler yet more stable compared to that in NFD. Microbial succession in MTD was primarily driven by interspecies interactions and environmental factors. Furthermore, deterministic processes and stochastic processes jointly governed microbial assembly both FD and NFD, with temperature, moisture, and acidity as the key driving factors. These findings highlight the pivotal role of the flipping crafts in enhancing microbial functionality and metabolic diversity, offering a theoretical basis for optimizing MTD production and advancing intelligent fermentation systems.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.