Siyu Ren, Linfeng Zhang, Yue Zhang, Ce Wang and Xiaofeng Lu*,
{"title":"Confining Hollow CoSn(OH)6 Cubes Inside Polydopamine Nanotubes To Significantly Promote Fenton-like Catalysis for Water Treatment","authors":"Siyu Ren, Linfeng Zhang, Yue Zhang, Ce Wang and Xiaofeng Lu*, ","doi":"10.1021/acs.inorgchem.5c0007010.1021/acs.inorgchem.5c00070","DOIUrl":null,"url":null,"abstract":"<p >Tubular nanoreactors, which exhibit a distinctive void-confinement effect, have become intriguing for their prospective applications in catalysis. However, rationally constructing these structures remains a formidable challenge, particularly in realizing a significantly synergistic catalytic enhancement. In this study, we present a reliable template polymerization-guided synthetic strategy, creating hollow CoSn(OH)<sub>6</sub> cubes inside polydopamine (PDA) nanotubes (CoSn(OH)<sub>6</sub>@PDA NTs). This sample functions as a potent peroxymonosulfate (PMS) activator for toxic contaminant oxidation. Diverse reactive oxygen species produced within the nanotubes significantly enhance this efficiency. The exceptional catalytic property results from the rich active sites of CoSn(OH)<sub>6</sub> and the distinct nanotubular structure, which concentrates reactants and benefits the mass transfer process. This research opens possibilities for developing high-performance and robust catalysts with spatial confinement effects, advancing water treatment technology.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"64 16","pages":"8064–8073 8064–8073"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.5c00070","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Tubular nanoreactors, which exhibit a distinctive void-confinement effect, have become intriguing for their prospective applications in catalysis. However, rationally constructing these structures remains a formidable challenge, particularly in realizing a significantly synergistic catalytic enhancement. In this study, we present a reliable template polymerization-guided synthetic strategy, creating hollow CoSn(OH)6 cubes inside polydopamine (PDA) nanotubes (CoSn(OH)6@PDA NTs). This sample functions as a potent peroxymonosulfate (PMS) activator for toxic contaminant oxidation. Diverse reactive oxygen species produced within the nanotubes significantly enhance this efficiency. The exceptional catalytic property results from the rich active sites of CoSn(OH)6 and the distinct nanotubular structure, which concentrates reactants and benefits the mass transfer process. This research opens possibilities for developing high-performance and robust catalysts with spatial confinement effects, advancing water treatment technology.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.