DFT-CES2: Quantum Mechanics Based Embedding for Mean-Field QM/MM of Solid–Liquid Interfaces

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Taehwan Jang, Seung-Jae Shin, Hyung-Kyu Lim, William A. Goddard III and Hyungjun Kim*, 
{"title":"DFT-CES2: Quantum Mechanics Based Embedding for Mean-Field QM/MM of Solid–Liquid Interfaces","authors":"Taehwan Jang,&nbsp;Seung-Jae Shin,&nbsp;Hyung-Kyu Lim,&nbsp;William A. Goddard III and Hyungjun Kim*,&nbsp;","doi":"10.1021/jacsau.5c0017610.1021/jacsau.5c00176","DOIUrl":null,"url":null,"abstract":"<p >The solid–liquid interface plays a crucial role in governing complex chemical phenomena, such as heterogeneous catalysis and (photo)electrochemical processes. Despite its importance, acquiring atom-scale information about these buried interfaces remains highly challenging, which has led to an increasing demand for reliable atomic simulations of solid–liquid interfaces. Here, we introduce an innovative first-principles-based multiscale simulation approach called DFT-CES2, a mean-field QM/MM method. To accurately model interactions at the interface, we developed a quantum-mechanics-based embedding scheme that partitions complex noncovalent interactions into Pauli repulsion, Coulomb (including polarization), and London dispersion energies, which are described using atom-dependent transferable parameters. As validated by comparison with high-level quantum mechanical energies, DFT-CES2 demonstrates chemical accuracy in describing interfacial interactions. DFT-CES2 enables the investigation of complex solid–liquid interfaces while avoiding extensive parametrization. Therefore, we expect DFT-CES2 to be broadly applicable for elucidating atom-scale details of large scale solid–liquid interfaces for multicomponent systems.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 4","pages":"2047–2058 2047–2058"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00176","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The solid–liquid interface plays a crucial role in governing complex chemical phenomena, such as heterogeneous catalysis and (photo)electrochemical processes. Despite its importance, acquiring atom-scale information about these buried interfaces remains highly challenging, which has led to an increasing demand for reliable atomic simulations of solid–liquid interfaces. Here, we introduce an innovative first-principles-based multiscale simulation approach called DFT-CES2, a mean-field QM/MM method. To accurately model interactions at the interface, we developed a quantum-mechanics-based embedding scheme that partitions complex noncovalent interactions into Pauli repulsion, Coulomb (including polarization), and London dispersion energies, which are described using atom-dependent transferable parameters. As validated by comparison with high-level quantum mechanical energies, DFT-CES2 demonstrates chemical accuracy in describing interfacial interactions. DFT-CES2 enables the investigation of complex solid–liquid interfaces while avoiding extensive parametrization. Therefore, we expect DFT-CES2 to be broadly applicable for elucidating atom-scale details of large scale solid–liquid interfaces for multicomponent systems.

基于量子力学的固液界面平均场QM/MM嵌入
固液界面在控制复杂的化学现象,如多相催化和(光)电化学过程中起着至关重要的作用。尽管它很重要,但获取这些埋藏界面的原子尺度信息仍然非常具有挑战性,这导致对可靠的固液界面原子模拟的需求不断增加。在这里,我们介绍了一种创新的基于第一性原理的多尺度模拟方法,称为DFT-CES2,即平均场QM/MM方法。为了准确地模拟界面上的相互作用,我们开发了一种基于量子力学的嵌入方案,该方案将复杂的非共价相互作用划分为泡利排斥、库仑(包括极化)和伦敦色散能量,这些能量使用原子相关的可转移参数来描述。通过与高能级量子力学能的比较验证,DFT-CES2在描述界面相互作用方面具有化学准确性。DFT-CES2能够研究复杂的固液界面,同时避免广泛的参数化。因此,我们期望DFT-CES2广泛适用于阐明多组分系统的大尺度固液界面的原子尺度细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信