Isothermal Disorder-to-Order Transitions of DNA Origami Structures Induced by Alternative Component Subsets

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yue Wang, Biancheng Wei, Qinglin Xia, Lei Ren, Bin Li, Linjie Guo, Ying Zhu, Lihua Wang*, Kai Jiao* and Jiang Li*, 
{"title":"Isothermal Disorder-to-Order Transitions of DNA Origami Structures Induced by Alternative Component Subsets","authors":"Yue Wang,&nbsp;Biancheng Wei,&nbsp;Qinglin Xia,&nbsp;Lei Ren,&nbsp;Bin Li,&nbsp;Linjie Guo,&nbsp;Ying Zhu,&nbsp;Lihua Wang*,&nbsp;Kai Jiao* and Jiang Li*,&nbsp;","doi":"10.1021/jacsau.5c0019510.1021/jacsau.5c00195","DOIUrl":null,"url":null,"abstract":"<p >DNA origami technology has shown potential across various applications, including the construction of molecular machines. Among these, mimicking the complex structural transitions of natural biomolecules in physiological environments remains a long-standing pursuit. Here, inspired by intrinsically disordered proteins, we propose a strategy for inducing disorder-to-order transitions in DNA origami structures at room temperature using alternative component subsets. In a triangular DNA origami model, we define three subsets of its constitutional DNA staples based on their spatial distributions along the scaffold. Atomic force microscopy and molecular dynamics simulations show that the individual subsets result in metastable assemblies with disordered morphologies and elevated free-energy fluctuations compared with those generated by the complete set of staples. Notably, after the addition of the remaining staples, the irregular structures transform into ordered triangular architectures within 2 h at room temperature, achieving yields of up to ∼60%. These findings suggest that these controlled folding pathways in DNA origami can robustly converge on the global energy minimum at room temperature, thereby providing a promising alternative strategy for engineering biomimetic DNA molecular machines.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 4","pages":"1641–1648 1641–1648"},"PeriodicalIF":8.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00195","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA origami technology has shown potential across various applications, including the construction of molecular machines. Among these, mimicking the complex structural transitions of natural biomolecules in physiological environments remains a long-standing pursuit. Here, inspired by intrinsically disordered proteins, we propose a strategy for inducing disorder-to-order transitions in DNA origami structures at room temperature using alternative component subsets. In a triangular DNA origami model, we define three subsets of its constitutional DNA staples based on their spatial distributions along the scaffold. Atomic force microscopy and molecular dynamics simulations show that the individual subsets result in metastable assemblies with disordered morphologies and elevated free-energy fluctuations compared with those generated by the complete set of staples. Notably, after the addition of the remaining staples, the irregular structures transform into ordered triangular architectures within 2 h at room temperature, achieving yields of up to ∼60%. These findings suggest that these controlled folding pathways in DNA origami can robustly converge on the global energy minimum at room temperature, thereby providing a promising alternative strategy for engineering biomimetic DNA molecular machines.

由可选组分亚群诱导的DNA折纸结构的等温无序到有序转变
DNA折纸技术已经在各种应用中显示出潜力,包括分子机器的构建。其中,模拟生理环境中天然生物分子的复杂结构转变仍然是一个长期的追求。在这里,受内在无序蛋白质的启发,我们提出了一种在室温下使用替代成分子集诱导DNA折纸结构中无序到有序转变的策略。在一个三角形DNA折纸模型中,我们根据其沿支架的空间分布定义了其构成DNA钉的三个子集。原子力显微镜和分子动力学模拟表明,与完整的订书钉所产生的组装相比,单个子集导致亚稳态组装,具有无序的形态和更高的自由能波动。值得注意的是,在加入剩余的主食后,不规则结构在室温下2小时内转变为有序的三角形结构,产率高达60%。这些发现表明,DNA折纸中的这些受控折叠途径可以在室温下稳定地收敛于全局能量最小值,从而为工程仿生DNA分子机器提供了一种有希望的替代策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信