Ammonium-Based Plastic Crystals as Solid-State Electrolytes for Lithium and Sodium Batteries

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Manuel Salado, Thomas H. Smith, Nanditha Sirigiri, Fangfang Chen, Luke A. O’Dell, Jennifer M. Pringle and Maria Forsyth*, 
{"title":"Ammonium-Based Plastic Crystals as Solid-State Electrolytes for Lithium and Sodium Batteries","authors":"Manuel Salado,&nbsp;Thomas H. Smith,&nbsp;Nanditha Sirigiri,&nbsp;Fangfang Chen,&nbsp;Luke A. O’Dell,&nbsp;Jennifer M. Pringle and Maria Forsyth*,&nbsp;","doi":"10.1021/jacsau.4c0108610.1021/jacsau.4c01086","DOIUrl":null,"url":null,"abstract":"<p >Organic ionic plastic crystals (OIPCs) are a promising class of solid materials composed of organic cations and inorganic anions, increasingly explored for use as solid-state electrolytes (SSEs). These materials offer a safer alternative to conventional carbonate-based electrolytes in lithium and sodium ion batteries. In this study, lithium and sodium salts were incorporated into tetramethylammonium bis(fluorosulfonyl)imide ([N<sub>1111</sub>][FSI]), yielding solid state electrolytes with notable properties, including high ionic conductivities (1.79 mS·cm<sup>–1</sup> for LiFSI doped and 3.2 mS·cm<sup>–1</sup> NaFSI doped, both at 80 °C), elevated diffusion coefficients (up to 3.83 × 10<sup>–11</sup> m<sup>2</sup>·s<sup>–1</sup> for Li<sup>+</sup> at 80 °C), and high transference numbers (0.8 and 0.4, for Li and Na, respectively). To date, except for ceramic and glassy ion conductors, there has been no significant research demonstrating true solid-state behavior with Li<sup>+</sup> or Na<sup>+</sup> ion transport fully decoupled from the motion of the host structure. Furthermore, these electrolytes have exhibited impressive current densities up to 3.5 mA·cm<sup>–2</sup> during Li|Li and 2.9 mA·cm<sup>–2</sup> for Na|Na symmetric cell cycling at room temperature. As a result, these materials hold considerable potential for enhancing both Li and Na electrochemical energy storage technologies, combining both improved efficiency and safety features.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 4","pages":"1663–1676 1663–1676"},"PeriodicalIF":8.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c01086","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c01086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic ionic plastic crystals (OIPCs) are a promising class of solid materials composed of organic cations and inorganic anions, increasingly explored for use as solid-state electrolytes (SSEs). These materials offer a safer alternative to conventional carbonate-based electrolytes in lithium and sodium ion batteries. In this study, lithium and sodium salts were incorporated into tetramethylammonium bis(fluorosulfonyl)imide ([N1111][FSI]), yielding solid state electrolytes with notable properties, including high ionic conductivities (1.79 mS·cm–1 for LiFSI doped and 3.2 mS·cm–1 NaFSI doped, both at 80 °C), elevated diffusion coefficients (up to 3.83 × 10–11 m2·s–1 for Li+ at 80 °C), and high transference numbers (0.8 and 0.4, for Li and Na, respectively). To date, except for ceramic and glassy ion conductors, there has been no significant research demonstrating true solid-state behavior with Li+ or Na+ ion transport fully decoupled from the motion of the host structure. Furthermore, these electrolytes have exhibited impressive current densities up to 3.5 mA·cm–2 during Li|Li and 2.9 mA·cm–2 for Na|Na symmetric cell cycling at room temperature. As a result, these materials hold considerable potential for enhancing both Li and Na electrochemical energy storage technologies, combining both improved efficiency and safety features.

作为锂和钠电池固态电解质的氨基塑料晶体
有机离子塑料晶体(OIPCs)是一类很有前途的由有机阳离子和无机阴离子组成的固体材料,作为固态电解质(ssi)的应用越来越受到人们的关注。这些材料为锂离子电池和钠离子电池提供了一种比传统碳酸盐电解质更安全的替代品。在本研究中,锂盐和钠盐被掺入到四甲基双(氟磺酰基)亚胺([N1111][FSI])中,得到了具有显著性能的固态电解质,包括高离子电导率(在80°C下,掺杂LiFSI为1.79 mS·cm-1,掺杂NaFSI为3.2 mS·cm-1)、高扩散系数(80°C下,Li+高达3.83 × 10-11 m2·s-1)和高转移数(分别为0.8和0.4)。迄今为止,除了陶瓷和玻璃离子导体外,还没有重要的研究证明Li+或Na+离子输运与宿主结构的运动完全解耦的真正固态行为。此外,这些电解质在室温下Li|Li和Na|对称电池循环中表现出令人印象深刻的电流密度,分别高达3.5 mA·cm-2和2.9 mA·cm-2。因此,这些材料结合了提高的效率和安全特性,在增强Li和Na电化学储能技术方面具有相当大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信