Manipulating the Interfacial Hydrophobic Microenvironment via Electrolyte Engineering Promotes Electrocatalytic Fatty Alcohol Oxidation Coupled with Hydrogen Production

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ruiqi Du, Zemao Chen, Shiyan Wang, Shumao Zeng, Rui Jia, Kaizheng Zhang, Diannan Lu, Haihui Wang* and Yi Cheng*, 
{"title":"Manipulating the Interfacial Hydrophobic Microenvironment via Electrolyte Engineering Promotes Electrocatalytic Fatty Alcohol Oxidation Coupled with Hydrogen Production","authors":"Ruiqi Du,&nbsp;Zemao Chen,&nbsp;Shiyan Wang,&nbsp;Shumao Zeng,&nbsp;Rui Jia,&nbsp;Kaizheng Zhang,&nbsp;Diannan Lu,&nbsp;Haihui Wang* and Yi Cheng*,&nbsp;","doi":"10.1021/jacsau.5c0021510.1021/jacsau.5c00215","DOIUrl":null,"url":null,"abstract":"<p >The selective oxidation of fatty alcohols to fatty acids represents a pivotal transformation in organic synthesis. Traditional methods often require harsh conditions and environmentally harmful oxidants or solvents. Electrocatalytic oxidation emerges as a promising green alternative, enabling mild oxidation in aqueous media and concurrent energy-efficient hydrogen production at the cathode. However, the poor solubility of fatty alcohols in water poses a significant challenge, reducing the reactant availability at the electrode surface, thereby hindering mass transfer and overall reaction rates. Herein, we develop an electrolyte engineering strategy that incorporates cetyltrimethylammonium hydroxide (CTAOH) as an additive. This strategy significantly enhances the oxidation current density of fatty alcohols as well as the production rate of fatty acids on a gold electrocatalyst. Through a mechanistic investigation combining experimental evidence from a quartz crystal microbalance (QCM) and in situ attenuated total reflectance surface-enhanced infrared spectroscopy (ATR-SEIRAS) with molecular dynamics (MD) simulations, we confirm that the preferential adsorption of CTAOH creates a hydrophobic interfacial microenvironment at the anode, promoting the enrichment of reactant at the electrode–electrolyte interface. This work highlights the significance of interfacial hydrophobicity modulation in boosting aqueous-phase electrocatalytic oxidation, paving the way for more efficient electrocatalytic transformations involving water-insoluble reactants.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 4","pages":"1974–1982 1974–1982"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00215","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The selective oxidation of fatty alcohols to fatty acids represents a pivotal transformation in organic synthesis. Traditional methods often require harsh conditions and environmentally harmful oxidants or solvents. Electrocatalytic oxidation emerges as a promising green alternative, enabling mild oxidation in aqueous media and concurrent energy-efficient hydrogen production at the cathode. However, the poor solubility of fatty alcohols in water poses a significant challenge, reducing the reactant availability at the electrode surface, thereby hindering mass transfer and overall reaction rates. Herein, we develop an electrolyte engineering strategy that incorporates cetyltrimethylammonium hydroxide (CTAOH) as an additive. This strategy significantly enhances the oxidation current density of fatty alcohols as well as the production rate of fatty acids on a gold electrocatalyst. Through a mechanistic investigation combining experimental evidence from a quartz crystal microbalance (QCM) and in situ attenuated total reflectance surface-enhanced infrared spectroscopy (ATR-SEIRAS) with molecular dynamics (MD) simulations, we confirm that the preferential adsorption of CTAOH creates a hydrophobic interfacial microenvironment at the anode, promoting the enrichment of reactant at the electrode–electrolyte interface. This work highlights the significance of interfacial hydrophobicity modulation in boosting aqueous-phase electrocatalytic oxidation, paving the way for more efficient electrocatalytic transformations involving water-insoluble reactants.

通过电解液工程控制界面疏水微环境促进电催化脂肪醇氧化与制氢耦合
脂肪醇选择性氧化为脂肪酸代表了有机合成中的关键转变。传统的方法通常需要恶劣的条件和对环境有害的氧化剂或溶剂。电催化氧化是一种很有前途的绿色替代方案,可以在水介质中进行温和氧化,同时在阴极上产生节能的氢气。然而,脂肪醇在水中的溶解度差带来了重大挑战,降低了电极表面的反应物可用性,从而阻碍了传质和总体反应速率。在此,我们开发了一种电解质工程策略,其中包含十六烷基三甲基氢氧化铵(CTAOH)作为添加剂。该策略显著提高了脂肪醇的氧化电流密度以及在金电催化剂上生成脂肪酸的速率。通过结合石英晶体微天平(QCM)和原位衰减全反射表面增强红外光谱(ATR-SEIRAS)的实验证据以及分子动力学(MD)模拟的机理研究,我们证实了CTAOH的优先吸附在阳极处形成疏水界面微环境,促进了电极-电解质界面处的反应物质富集。这项工作强调了界面疏水性调节在促进水相电催化氧化中的重要性,为涉及水不溶性反应物的更有效的电催化转化铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信