{"title":"scMultiMap: Cell-type-specific mapping of enhancers and target genes from single-cell multimodal data","authors":"Chang Su, Dongsoo Lee, Peng Jin, Jingfei Zhang","doi":"10.1038/s41467-025-59306-z","DOIUrl":null,"url":null,"abstract":"<p>Mapping enhancers and target genes in disease-related cell types provides critical insights into the functional mechanisms of genome-wide association studies (GWAS) variants. Single-cell multimodal data, which measure gene expression and chromatin accessibility in the same cells, enable the cell-type-specific inference of enhancer-gene pairs. However, this task is challenged by high data sparsity, sequencing depth variation, and the computational burden of analyzing a large number of pairs. We introduce scMultiMap, a statistical method that infers enhancer-gene association from sparse multimodal counts using a joint latent-variable model. It adjusts for technical confounding, permits fast moment-based estimation and provides analytically derived <i>p</i>-values. In blood and brain data, scMultiMap shows appropriate type I error control, high statistical power, and computational efficiency (1% of existing methods). When applied to Alzheimer’s disease (AD) data, scMultiMap gives the highest heritability enrichment in microglia and reveals insights into the regulatory mechanisms of AD GWAS variants.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"34 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59306-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mapping enhancers and target genes in disease-related cell types provides critical insights into the functional mechanisms of genome-wide association studies (GWAS) variants. Single-cell multimodal data, which measure gene expression and chromatin accessibility in the same cells, enable the cell-type-specific inference of enhancer-gene pairs. However, this task is challenged by high data sparsity, sequencing depth variation, and the computational burden of analyzing a large number of pairs. We introduce scMultiMap, a statistical method that infers enhancer-gene association from sparse multimodal counts using a joint latent-variable model. It adjusts for technical confounding, permits fast moment-based estimation and provides analytically derived p-values. In blood and brain data, scMultiMap shows appropriate type I error control, high statistical power, and computational efficiency (1% of existing methods). When applied to Alzheimer’s disease (AD) data, scMultiMap gives the highest heritability enrichment in microglia and reveals insights into the regulatory mechanisms of AD GWAS variants.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.