scMultiMap: Cell-type-specific mapping of enhancers and target genes from single-cell multimodal data

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chang Su, Dongsoo Lee, Peng Jin, Jingfei Zhang
{"title":"scMultiMap: Cell-type-specific mapping of enhancers and target genes from single-cell multimodal data","authors":"Chang Su, Dongsoo Lee, Peng Jin, Jingfei Zhang","doi":"10.1038/s41467-025-59306-z","DOIUrl":null,"url":null,"abstract":"<p>Mapping enhancers and target genes in disease-related cell types provides critical insights into the functional mechanisms of genome-wide association studies (GWAS) variants. Single-cell multimodal data, which measure gene expression and chromatin accessibility in the same cells, enable the cell-type-specific inference of enhancer-gene pairs. However, this task is challenged by high data sparsity, sequencing depth variation, and the computational burden of analyzing a large number of pairs. We introduce scMultiMap, a statistical method that infers enhancer-gene association from sparse multimodal counts using a joint latent-variable model. It adjusts for technical confounding, permits fast moment-based estimation and provides analytically derived <i>p</i>-values. In blood and brain data, scMultiMap shows appropriate type I error control, high statistical power, and computational efficiency (1% of existing methods). When applied to Alzheimer’s disease (AD) data, scMultiMap gives the highest heritability enrichment in microglia and reveals insights into the regulatory mechanisms of AD GWAS variants.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"34 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59306-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Mapping enhancers and target genes in disease-related cell types provides critical insights into the functional mechanisms of genome-wide association studies (GWAS) variants. Single-cell multimodal data, which measure gene expression and chromatin accessibility in the same cells, enable the cell-type-specific inference of enhancer-gene pairs. However, this task is challenged by high data sparsity, sequencing depth variation, and the computational burden of analyzing a large number of pairs. We introduce scMultiMap, a statistical method that infers enhancer-gene association from sparse multimodal counts using a joint latent-variable model. It adjusts for technical confounding, permits fast moment-based estimation and provides analytically derived p-values. In blood and brain data, scMultiMap shows appropriate type I error control, high statistical power, and computational efficiency (1% of existing methods). When applied to Alzheimer’s disease (AD) data, scMultiMap gives the highest heritability enrichment in microglia and reveals insights into the regulatory mechanisms of AD GWAS variants.

Abstract Image

scMultiMap:从单细胞多模态数据中对增强子和靶基因进行细胞类型特异性定位
在疾病相关细胞类型中定位增强子和靶基因为全基因组关联研究(GWAS)变异的功能机制提供了重要见解。单细胞多模态数据,测量基因表达和染色质可及性在同一细胞中,使增强基因对的细胞类型特异性推断。然而,该任务存在数据稀疏度高、测序深度变化大、分析大量对的计算量大等问题。我们介绍了scMultiMap,这是一种使用联合潜在变量模型从稀疏多模态计数推断增强基因关联的统计方法。它调整了技术混杂,允许快速基于矩的估计,并提供分析推导的p值。在血液和大脑数据中,scMultiMap显示出适当的I型误差控制、高统计能力和计算效率(现有方法的1%)。当应用于阿尔茨海默病(AD)数据时,scMultiMap在小胶质细胞中提供了最高的遗传富集,并揭示了AD GWAS变异的调控机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信