Unraveling mechanical and electronic attributes of MN4 (M= Be, Mg, Zn, Cd) monolayers with anisotropic Dirac cone and their excellent supercapacitive performances

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Krishnanshu Basak, Arka Bandyopadhyay, Debnarayan Jana
{"title":"Unraveling mechanical and electronic attributes of MN4 (M= Be, Mg, Zn, Cd) monolayers with anisotropic Dirac cone and their excellent supercapacitive performances","authors":"Krishnanshu Basak, Arka Bandyopadhyay, Debnarayan Jana","doi":"10.1016/j.apsusc.2025.163250","DOIUrl":null,"url":null,"abstract":"The recent experimental realization of <span><span style=\"\"><math><mrow is=\"true\"><mi is=\"true\">B</mi><mi is=\"true\">e</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.322ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -763.5 2483.4 999.8\" width=\"5.768ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-42\"></use></g><g is=\"true\" transform=\"translate(759,0)\"><use xlink:href=\"#MJMATHI-65\"></use></g><g is=\"true\" transform=\"translate(1226,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4E\"></use></g></g><g is=\"true\" transform=\"translate(803,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">B</mi><mi is=\"true\">e</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></script></span> monolayer, beryllonitrene (Phys. Rev. Lett. 126(2021), 175501), has unveiled a novel group of nitrogen-rich 2D materials, namely <span><span style=\"\"><math><mrow is=\"true\"><mi is=\"true\">M</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.322ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -763.5 2308.9 999.8\" width=\"5.363ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4D\"></use></g><g is=\"true\" transform=\"translate(1051,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4E\"></use></g></g><g is=\"true\" transform=\"translate(803,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">M</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></script></span> (M = Be, Mg, Zn, Cd). In this present work, we theoretically explore the anisotropic mechanical and electronic responses of all systems based on the first principles calculations. Among the structures, <span><span style=\"\"><math><mrow is=\"true\"><mi is=\"true\">B</mi><mi is=\"true\">e</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.322ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -763.5 2483.4 999.8\" width=\"5.768ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-42\"></use></g><g is=\"true\" transform=\"translate(759,0)\"><use xlink:href=\"#MJMATHI-65\"></use></g><g is=\"true\" transform=\"translate(1226,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4E\"></use></g></g><g is=\"true\" transform=\"translate(803,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">B</mi><mi is=\"true\">e</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></script></span> and <span><span style=\"\"><math><mrow is=\"true\"><mi is=\"true\">M</mi><mi is=\"true\">g</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.458ex\" role=\"img\" style=\"vertical-align: -0.685ex;\" viewbox=\"0 -763.5 2789.4 1058.4\" width=\"6.479ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4D\"></use></g><g is=\"true\" transform=\"translate(1051,0)\"><use xlink:href=\"#MJMATHI-67\"></use></g><g is=\"true\" transform=\"translate(1532,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4E\"></use></g></g><g is=\"true\" transform=\"translate(803,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">M</mi><mi is=\"true\">g</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></script></span> sheets are brittle while <span><span style=\"\"><math><mrow is=\"true\"><mi is=\"true\">Z</mi><mi is=\"true\">n</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.322ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -763.5 2581.4 999.8\" width=\"5.996ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-5A\"></use></g><g is=\"true\" transform=\"translate(723,0)\"><use xlink:href=\"#MJMATHI-6E\"></use></g><g is=\"true\" transform=\"translate(1324,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4E\"></use></g></g><g is=\"true\" transform=\"translate(803,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">Z</mi><mi is=\"true\">n</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></script></span> and <span><span style=\"\"><math><mrow is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.458ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -822.1 2541.4 1058.4\" width=\"5.903ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g><g is=\"true\" transform=\"translate(760,0)\"><use xlink:href=\"#MJMATHI-64\"></use></g><g is=\"true\" transform=\"translate(1284,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4E\"></use></g></g><g is=\"true\" transform=\"translate(803,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></script></span> are ductile in response to external strain along particular direction. Electronic band structure analysis reveals that all the structures exhibit anisotropic Dirac cones like features. We further propose a simple coupled-chain model to investigate the occurrence and robustness of such Dirac cones, thus validating our numerical results. In addition, the capacitive responses of all structures are probed by computing quantum capacitance for different electrochemical potential ranges and identifying <span><span style=\"\"><math><mrow is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.458ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -822.1 2541.4 1058.4\" width=\"5.903ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g><g is=\"true\" transform=\"translate(760,0)\"><use xlink:href=\"#MJMATHI-64\"></use></g><g is=\"true\" transform=\"translate(1284,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4E\"></use></g></g><g is=\"true\" transform=\"translate(803,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></script></span> with the maximum value of 219 <span><span style=\"\"><math><mrow is=\"true\"><mi is=\"true\">μ</mi><mi is=\"true\">F</mi><mo is=\"true\">/</mo><mi is=\"true\">c</mi><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">m</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.002ex\" role=\"img\" style=\"vertical-align: -0.821ex;\" viewbox=\"0 -939.3 3619.4 1292.7\" width=\"8.406ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g><g is=\"true\" transform=\"translate(603,0)\"><use xlink:href=\"#MJMATHI-46\"></use></g><g is=\"true\" transform=\"translate(1353,0)\"><use xlink:href=\"#MJMAIN-2F\"></use></g><g is=\"true\" transform=\"translate(1853,0)\"><use xlink:href=\"#MJMATHI-63\"></use></g><g is=\"true\" transform=\"translate(2287,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6D\"></use></g></g><g is=\"true\" transform=\"translate(878,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">μ</mi><mi is=\"true\">F</mi><mo is=\"true\">/</mo><mi is=\"true\">c</mi><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">m</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></math></script></span> for positive electrode potential. The adaptability of a particular electrode as cathode or anode is confirmed by evaluating surface charge density i.e. <span><span style=\"\"><math><mfrac is=\"true\"><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mi is=\"true\">a</mi></mrow></msub></mrow><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></mrow></mfrac></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"4.363ex\" role=\"img\" style=\"vertical-align: -1.637ex;\" viewbox=\"0 -1173.6 1255.1 1878.5\" width=\"2.915ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g transform=\"translate(120,0)\"><rect height=\"60\" stroke=\"none\" width=\"1015\" x=\"0\" y=\"220\"></rect><g is=\"true\" transform=\"translate(60,588)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-51\"></use></g></g><g is=\"true\" transform=\"translate(559,-163)\"><g is=\"true\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMATHI-61\"></use></g></g></g></g><g is=\"true\" transform=\"translate(84,-419)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-51\"></use></g></g><g is=\"true\" transform=\"translate(559,-163)\"><g is=\"true\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMATHI-63\"></use></g></g></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mfrac is=\"true\"><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mi is=\"true\">a</mi></mrow></msub></mrow><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></mrow></mfrac></math></script></span>. The numerical results clearly demonstrate that the most prominent value of <span><span style=\"\"><math><mfrac is=\"true\"><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mi is=\"true\">a</mi></mrow></msub></mrow><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></mrow></mfrac></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"4.363ex\" role=\"img\" style=\"vertical-align: -1.637ex;\" viewbox=\"0 -1173.6 1255.1 1878.5\" width=\"2.915ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g transform=\"translate(120,0)\"><rect height=\"60\" stroke=\"none\" width=\"1015\" x=\"0\" y=\"220\"></rect><g is=\"true\" transform=\"translate(60,588)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-51\"></use></g></g><g is=\"true\" transform=\"translate(559,-163)\"><g is=\"true\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMATHI-61\"></use></g></g></g></g><g is=\"true\" transform=\"translate(84,-419)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-51\"></use></g></g><g is=\"true\" transform=\"translate(559,-163)\"><g is=\"true\"><use transform=\"scale(0.5)\" xlink:href=\"#MJMATHI-63\"></use></g></g></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mfrac is=\"true\"><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mi is=\"true\">a</mi></mrow></msub></mrow><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></mrow></mfrac></math></script></span> is recorded for <span><span style=\"\"><math><mrow is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.458ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -822.1 2541.4 1058.4\" width=\"5.903ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g><g is=\"true\" transform=\"translate(760,0)\"><use xlink:href=\"#MJMATHI-64\"></use></g><g is=\"true\" transform=\"translate(1284,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4E\"></use></g></g><g is=\"true\" transform=\"translate(803,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></script></span> monolayer (2.13), whereas other <span><span style=\"\"><math><mrow is=\"true\"><mi is=\"true\">M</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.322ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -763.5 2308.9 999.8\" width=\"5.363ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4D\"></use></g><g is=\"true\" transform=\"translate(1051,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4E\"></use></g></g><g is=\"true\" transform=\"translate(803,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">M</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></script></span> analogues emerge as promising electrodes for symmetric supercapacitors (<span><span style=\"\"><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mi is=\"true\">a</mi></mrow></msub><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">≈</mo><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.73ex\" role=\"img\" style=\"vertical-align: -0.821ex;\" viewbox=\"0 -822.1 3798 1175.6\" width=\"8.821ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-51\"></use></g></g><g is=\"true\" transform=\"translate(791,-231)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-61\"></use></g></g></g><g is=\"true\" transform=\"translate(1543,0)\"><use xlink:href=\"#MJMAIN-2248\"></use></g><g is=\"true\" transform=\"translate(2599,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-51\"></use></g></g><g is=\"true\" transform=\"translate(791,-231)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-63\"></use></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mi is=\"true\">a</mi></mrow></msub><mo linebreak=\"goodbreak\" linebreakstyle=\"after\" is=\"true\">≈</mo><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">Q</mi></mrow><mrow is=\"true\"><mi is=\"true\">c</mi></mrow></msub></mrow></math></script></span>). We have also traced out the average value of <span><span style=\"\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">Q</mi></mrow></msub></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.73ex\" role=\"img\" style=\"vertical-align: -0.821ex;\" viewbox=\"0 -822.1 1375.2 1175.6\" width=\"3.194ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g></g><g is=\"true\" transform=\"translate(715,-155)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-51\"></use></g></g></g></g></svg></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">C</mi></mrow><mrow is=\"true\"><mi is=\"true\">Q</mi></mrow></msub></math></script></span> for both aqueous and ionic/organic systems and <span><span style=\"\"><math><mrow is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.458ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -822.1 2541.4 1058.4\" width=\"5.903ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-43\"></use></g><g is=\"true\" transform=\"translate(760,0)\"><use xlink:href=\"#MJMATHI-64\"></use></g><g is=\"true\" transform=\"translate(1284,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4E\"></use></g></g><g is=\"true\" transform=\"translate(803,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">C</mi><mi is=\"true\">d</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></script></span> is found to exhibit maximum value of 65 <span><span style=\"\"><math><mrow is=\"true\"><mi is=\"true\">μ</mi><mi is=\"true\">F</mi><mo is=\"true\">/</mo><mi is=\"true\">c</mi><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">m</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.002ex\" role=\"img\" style=\"vertical-align: -0.821ex;\" viewbox=\"0 -939.3 3619.4 1292.7\" width=\"8.406ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g><g is=\"true\" transform=\"translate(603,0)\"><use xlink:href=\"#MJMATHI-46\"></use></g><g is=\"true\" transform=\"translate(1353,0)\"><use xlink:href=\"#MJMAIN-2F\"></use></g><g is=\"true\" transform=\"translate(1853,0)\"><use xlink:href=\"#MJMATHI-63\"></use></g><g is=\"true\" transform=\"translate(2287,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6D\"></use></g></g><g is=\"true\" transform=\"translate(878,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">μ</mi><mi is=\"true\">F</mi><mo is=\"true\">/</mo><mi is=\"true\">c</mi><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">m</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn></mrow></msup></mrow></math></script></span> for higher electrochemical ranges. Moreover, significant improvement in quantum capacitance is reported for metal atom adsorbed <span><span style=\"\"><math><mrow is=\"true\"><mi is=\"true\">B</mi><mi is=\"true\">e</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.322ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -763.5 2483.4 999.8\" width=\"5.768ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-42\"></use></g><g is=\"true\" transform=\"translate(759,0)\"><use xlink:href=\"#MJMATHI-65\"></use></g><g is=\"true\" transform=\"translate(1226,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4E\"></use></g></g><g is=\"true\" transform=\"translate(803,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">B</mi><mi is=\"true\">e</mi><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn></mrow></msub></mrow></math></script></span> structure at positive electrode potential. These explorations are expected to encourage future research in developing novel and intriguing nanoelectronics and energy storage devices.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"77 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.163250","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The recent experimental realization of BeN4 monolayer, beryllonitrene (Phys. Rev. Lett. 126(2021), 175501), has unveiled a novel group of nitrogen-rich 2D materials, namely MN4 (M = Be, Mg, Zn, Cd). In this present work, we theoretically explore the anisotropic mechanical and electronic responses of all systems based on the first principles calculations. Among the structures, BeN4 and MgN4 sheets are brittle while ZnN4 and CdN4 are ductile in response to external strain along particular direction. Electronic band structure analysis reveals that all the structures exhibit anisotropic Dirac cones like features. We further propose a simple coupled-chain model to investigate the occurrence and robustness of such Dirac cones, thus validating our numerical results. In addition, the capacitive responses of all structures are probed by computing quantum capacitance for different electrochemical potential ranges and identifying CdN4 with the maximum value of 219 μF/cm2 for positive electrode potential. The adaptability of a particular electrode as cathode or anode is confirmed by evaluating surface charge density i.e. QaQc. The numerical results clearly demonstrate that the most prominent value of QaQc is recorded for CdN4 monolayer (2.13), whereas other MN4 analogues emerge as promising electrodes for symmetric supercapacitors (QaQc). We have also traced out the average value of CQ for both aqueous and ionic/organic systems and CdN4 is found to exhibit maximum value of 65 μF/cm2 for higher electrochemical ranges. Moreover, significant improvement in quantum capacitance is reported for metal atom adsorbed BeN4 structure at positive electrode potential. These explorations are expected to encourage future research in developing novel and intriguing nanoelectronics and energy storage devices.

Abstract Image

揭示具有各向异性狄拉克锥的MN4 (M= Be, Mg, Zn, Cd)单层膜的力学和电子特性及其优异的超电容性能
最近的实验实现了BeN4BeN4单层,beryllonitrene (Phys。Rev. Lett. 126(2021), 175501)公布了一组新的富氮2D材料,即MN4MN4 (M = Be, Mg, Zn, Cd)。在本工作中,我们从理论上探讨了基于第一性原理计算的所有系统的各向异性力学和电子响应。其中,BeN4BeN4和MgN4MgN4薄片具有脆性,而zn4znn4和CdN4CdN4薄片在特定方向的外应变下具有延展性。电子能带结构分析表明,所有结构都表现出各向异性狄拉克锥的特征。我们进一步提出了一个简单的耦合链模型来研究这种狄拉克锥的发生和鲁棒性,从而验证了我们的数值结果。此外,通过计算不同电化学电位范围的量子电容来探测各结构的电容响应,并鉴定出正极电位最大值为219 μF/cm2μF/cm2的CdN4CdN4。通过评价表面电荷密度(即QaQcQaQc)来确定特定电极作为阴极或阳极的适应性。数值结果清楚地表明,QaQcQaQc值在CdN4CdN4单层材料中最为突出(2.13),而其他MN4MN4类似物在对称超级电容器(Qa≈QcQa≈Qc)中表现出很好的前景。我们还计算出了水溶液和离子/有机体系中CQCQ的平均值,发现CdN4CdN4在较高的电化学范围内表现出65 μF/cm2μF/cm2的最大值。此外,在正电极电位下,金属原子吸附的BeN4BeN4结构显著改善了量子电容。这些探索有望鼓励未来开发新颖有趣的纳米电子学和能量存储设备的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信