{"title":"Disentangling anthropogenic and dynamic contributions to recent ocean warming","authors":"Jiheun Lee, Rémi Tailleux, Till Kuhlbrodt","doi":"10.1038/s41612-025-01043-7","DOIUrl":null,"url":null,"abstract":"<p>As the ocean absorbs over 90% of excess radiative heat, recent ocean warming is shaped by a combination of anthropogenic surface heat gain and dynamical processes redistributing heat. To distinguish these contributions, we introduce a novel framework that decomposes temperature changes into three components: ‘spice’ (density-compensated variability) and ‘heave’ (density-contributing variability), with heave further divided into ‘passive’ (net warming) and ‘dynamic’ (redistribution) contributions. Passive heave captures anthropogenic warming subducted along isopycnals, while spice and dynamic heave, which globally sum to zero, represent heat redistribution. Observations and climate models demonstrate general agreement on passive heave, establishing it as a key oceanic fingerprint of anthropogenic climate change. In contrast, dynamic heave, driven by interannual-to-decadal variability, exhibits significant spatial heterogeneity, with notable discrepancies between models and observations. This framework links ocean heat uptake to sea-level change, with passive heave driving global thermosteric rise and dynamic heave contributing to regional dynamic sea level changes.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"6 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01043-7","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As the ocean absorbs over 90% of excess radiative heat, recent ocean warming is shaped by a combination of anthropogenic surface heat gain and dynamical processes redistributing heat. To distinguish these contributions, we introduce a novel framework that decomposes temperature changes into three components: ‘spice’ (density-compensated variability) and ‘heave’ (density-contributing variability), with heave further divided into ‘passive’ (net warming) and ‘dynamic’ (redistribution) contributions. Passive heave captures anthropogenic warming subducted along isopycnals, while spice and dynamic heave, which globally sum to zero, represent heat redistribution. Observations and climate models demonstrate general agreement on passive heave, establishing it as a key oceanic fingerprint of anthropogenic climate change. In contrast, dynamic heave, driven by interannual-to-decadal variability, exhibits significant spatial heterogeneity, with notable discrepancies between models and observations. This framework links ocean heat uptake to sea-level change, with passive heave driving global thermosteric rise and dynamic heave contributing to regional dynamic sea level changes.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.