Disentangling anthropogenic and dynamic contributions to recent ocean warming

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Jiheun Lee, Rémi Tailleux, Till Kuhlbrodt
{"title":"Disentangling anthropogenic and dynamic contributions to recent ocean warming","authors":"Jiheun Lee, Rémi Tailleux, Till Kuhlbrodt","doi":"10.1038/s41612-025-01043-7","DOIUrl":null,"url":null,"abstract":"<p>As the ocean absorbs over 90% of excess radiative heat, recent ocean warming is shaped by a combination of anthropogenic surface heat gain and dynamical processes redistributing heat. To distinguish these contributions, we introduce a novel framework that decomposes temperature changes into three components: ‘spice’ (density-compensated variability) and ‘heave’ (density-contributing variability), with heave further divided into ‘passive’ (net warming) and ‘dynamic’ (redistribution) contributions. Passive heave captures anthropogenic warming subducted along isopycnals, while spice and dynamic heave, which globally sum to zero, represent heat redistribution. Observations and climate models demonstrate general agreement on passive heave, establishing it as a key oceanic fingerprint of anthropogenic climate change. In contrast, dynamic heave, driven by interannual-to-decadal variability, exhibits significant spatial heterogeneity, with notable discrepancies between models and observations. This framework links ocean heat uptake to sea-level change, with passive heave driving global thermosteric rise and dynamic heave contributing to regional dynamic sea level changes.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"6 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01043-7","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As the ocean absorbs over 90% of excess radiative heat, recent ocean warming is shaped by a combination of anthropogenic surface heat gain and dynamical processes redistributing heat. To distinguish these contributions, we introduce a novel framework that decomposes temperature changes into three components: ‘spice’ (density-compensated variability) and ‘heave’ (density-contributing variability), with heave further divided into ‘passive’ (net warming) and ‘dynamic’ (redistribution) contributions. Passive heave captures anthropogenic warming subducted along isopycnals, while spice and dynamic heave, which globally sum to zero, represent heat redistribution. Observations and climate models demonstrate general agreement on passive heave, establishing it as a key oceanic fingerprint of anthropogenic climate change. In contrast, dynamic heave, driven by interannual-to-decadal variability, exhibits significant spatial heterogeneity, with notable discrepancies between models and observations. This framework links ocean heat uptake to sea-level change, with passive heave driving global thermosteric rise and dynamic heave contributing to regional dynamic sea level changes.

Abstract Image

解开人为和动力因素对近期海洋变暖的影响
由于海洋吸收了超过90%的多余辐射热,最近的海洋变暖是由人为的表面热量增加和热量再分配的动力过程共同造成的。为了区分这些贡献,我们引入了一个新的框架,将温度变化分解为三个组成部分:“香料”(密度补偿变异性)和“起伏”(密度贡献变异性),其中起伏进一步分为“被动”(净变暖)和“动态”(再分配)贡献。被动起伏捕获了沿等斜线俯冲的人为变暖,而香料和动态起伏,全球总和为零,代表了热量再分配。观测和气候模式表明被动起伏的普遍一致性,将其确立为人为气候变化的关键海洋指纹。相比之下,由年际至年代际变化驱动的动态起伏表现出显著的空间异质性,模型与观测值之间存在显著差异。该框架将海洋热吸收与海平面变化联系起来,被动升力驱动全球热滞性上升,动态升力导致区域动态海平面变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信