Biomass-Template Synthesis of Mesoporous α-Fe2O3 With Oxygen Vacancies for High-Performance Lithium-Ion Batteries

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Dan Xu, Chen Yang, Jing Gao, Jing Lu, Rutao Wang, Suyuan Zeng, Yuanwei Sun
{"title":"Biomass-Template Synthesis of Mesoporous α-Fe2O3 With Oxygen Vacancies for High-Performance Lithium-Ion Batteries","authors":"Dan Xu,&nbsp;Chen Yang,&nbsp;Jing Gao,&nbsp;Jing Lu,&nbsp;Rutao Wang,&nbsp;Suyuan Zeng,&nbsp;Yuanwei Sun","doi":"10.1002/slct.202405951","DOIUrl":null,"url":null,"abstract":"<p>A biomass-template strategy for the synthesis of high-performance Li-ion batteries anode is highly desirable. In this study, we propose a mesoporous α-Fe<sub>2</sub>O<sub>3</sub> with oxygen vacancies derived from natural waste materials. This material was comprehensively characterized using TEM, BET, XPS, and in situ TEM. First-principles calculations reveal that O-defect in α-Fe<sub>2</sub>O<sub>3</sub> enhances both Li adsorption energy and electrical conductivity. Benefiting from these unique features, the material exhibits outstanding long-term stability (1062.6 mA h g<sup>−1</sup> after 900 cycles at the current density of 1 A g<sup>−1</sup>) along with rate capability (578.4 mA h g<sup>−1</sup> at the current density of 4 A g<sup>−1</sup>). This design and synthesis strategy for novel mesoporous α-Fe<sub>2</sub>O<sub>3</sub> with oxygen vacancies as anode for LIBs is expected to be highly meaningful and effective.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 17","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202405951","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A biomass-template strategy for the synthesis of high-performance Li-ion batteries anode is highly desirable. In this study, we propose a mesoporous α-Fe2O3 with oxygen vacancies derived from natural waste materials. This material was comprehensively characterized using TEM, BET, XPS, and in situ TEM. First-principles calculations reveal that O-defect in α-Fe2O3 enhances both Li adsorption energy and electrical conductivity. Benefiting from these unique features, the material exhibits outstanding long-term stability (1062.6 mA h g−1 after 900 cycles at the current density of 1 A g−1) along with rate capability (578.4 mA h g−1 at the current density of 4 A g−1). This design and synthesis strategy for novel mesoporous α-Fe2O3 with oxygen vacancies as anode for LIBs is expected to be highly meaningful and effective.

Abstract Image

生物质-模板合成具有氧空位的介孔 α-Fe2O3 用于高性能锂离子电池
生物质模板技术是制备高性能锂离子电池负极的理想方法。在这项研究中,我们提出了一种含氧空位的α-Fe2O3介孔材料。利用TEM, BET, XPS和原位TEM对该材料进行了全面表征。第一性原理计算表明,α-Fe2O3中的o缺陷提高了Li吸附能和导电性。得益于这些独特的特性,该材料表现出出色的长期稳定性(在1 A g−1电流密度下,900次循环后的1062.6 mA h g−1)以及速率能力(在4 A g−1电流密度下,578.4 mA h g−1)。这种以氧空位为阳极的新型介孔α-Fe2O3的设计和合成策略预计是非常有意义和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信