Exploration of electron and ion thermodynamic models in laser-plasma expansion

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yuan Hu, Zilin Huang, Yong Cao, Quanhua Sun, Heji Huang, Chengyuan Ding, Zhan Wang
{"title":"Exploration of electron and ion thermodynamic models in laser-plasma expansion","authors":"Yuan Hu,&nbsp;Zilin Huang,&nbsp;Yong Cao,&nbsp;Quanhua Sun,&nbsp;Heji Huang,&nbsp;Chengyuan Ding,&nbsp;Zhan Wang","doi":"10.1007/s11433-024-2645-2","DOIUrl":null,"url":null,"abstract":"<div><p>The expansion of laser-produced plasma (LPP), an important process to be understood to design the debris mitigation system of an extreme ultraviolet (EUV) light source, is governed by its associated electron and ion thermodynamics, the modeling of which is, however, a subject of debate. By applying the polytropic equation of state (EoS) for both electron and ion, we have derived the hydrodynamic-based self-similar solutions for an expanding plasma slab with finite ion temperature. The effects of electron and ion thermodynamics on plasma expansion and ion acceleration are investigated. We show that the unusual negative-correlation thermodynamic model for electrons in the hydrodynamic description of plasma expansion is an outcome of the interactions between the electrons following a nonequilibrium kappa distribution and the inherent plasma-induced electric field from a kinetic point of view. The comparisons between the self-similar solutions and the recent experiment data reveal that the electron is better characterized by the nonequilibrium kappa-based thermodynamic model with suprathermal population than the common equilibrium Boltzmann one. For thermal-ion expansion, it is found that the polytropic index for ion thermodynamics (<i>γ</i><sub><i>i</i></sub>) is about 2, in contrast to <i>γ</i><sub><i>i</i></sub> = 3 for the adiabatic assumption made in earlier studies.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 9","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2645-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The expansion of laser-produced plasma (LPP), an important process to be understood to design the debris mitigation system of an extreme ultraviolet (EUV) light source, is governed by its associated electron and ion thermodynamics, the modeling of which is, however, a subject of debate. By applying the polytropic equation of state (EoS) for both electron and ion, we have derived the hydrodynamic-based self-similar solutions for an expanding plasma slab with finite ion temperature. The effects of electron and ion thermodynamics on plasma expansion and ion acceleration are investigated. We show that the unusual negative-correlation thermodynamic model for electrons in the hydrodynamic description of plasma expansion is an outcome of the interactions between the electrons following a nonequilibrium kappa distribution and the inherent plasma-induced electric field from a kinetic point of view. The comparisons between the self-similar solutions and the recent experiment data reveal that the electron is better characterized by the nonequilibrium kappa-based thermodynamic model with suprathermal population than the common equilibrium Boltzmann one. For thermal-ion expansion, it is found that the polytropic index for ion thermodynamics (γi) is about 2, in contrast to γi = 3 for the adiabatic assumption made in earlier studies.

激光等离子体膨胀中电子和离子热力学模型的探索
激光产生的等离子体(LPP)的膨胀是设计极紫外(EUV)光源碎片缓减系统需要了解的一个重要过程,它受其相关的电子和离子热力学的支配,但其建模是一个有争议的主题。应用电子和离子的多向态方程,导出了有限离子温度下膨胀等离子体板的流体力学自相似解。研究了电子和离子热力学对等离子体膨胀和离子加速的影响。我们从动力学的角度表明,在等离子体膨胀的流体动力学描述中,电子的不寻常的负相关热力学模型是电子遵循非平衡kappa分布和固有等离子体感应电场之间相互作用的结果。将自相似解与最近的实验数据进行比较,发现基于kappa的非平衡态超热居群热力学模型比普通平衡态玻尔兹曼模型更能表征电子。对于热离子膨胀,发现离子热力学的多向性指数(γi)约为2,而早期研究中绝热假设的多向性指数γi = 3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信