Omar R. Gómez-Gómez , Marco A. Zárate-Navarro , J. Paulo García-Sandoval
{"title":"Heat exchanger control: Performance of thermodynamics-based geometrical vs classical PID controllers","authors":"Omar R. Gómez-Gómez , Marco A. Zárate-Navarro , J. Paulo García-Sandoval","doi":"10.1016/j.csite.2025.106130","DOIUrl":null,"url":null,"abstract":"<div><div>In this communication, a control problem based on thermodynamic principles is developed to control the output temperature of a heat exchanger in an experimental setup. The system is controlled through a nonlinear output error, which is proportional to the total entropy production within the heat exchanger. A lumped-parameter model of the heat exchanger allows to define the thermodynamic control scheme, with geometric control principles, a high-gain observer and an anti-windup scheme, which provides robustness against parametric uncertainties and disturbances. To make a comparison with classical control schemes, a Ziegler–Nichols PID controller was tuned for a First Order Plus Dead Time plant approximation. The experimental setup used a National Instruments Compact FieldPoint controller, and the control scheme was programmed in a LabVIEW interface. The performance of the proposed controller was tested under two criteria: energetic performance and total tracking control error. The results show that the classical controller has a better energy-saving performance, while the thermodynamic controller has a better tracking performance, making it more suitable for applications where temperature control needs to be more precise.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"71 ","pages":"Article 106130"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25003909","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this communication, a control problem based on thermodynamic principles is developed to control the output temperature of a heat exchanger in an experimental setup. The system is controlled through a nonlinear output error, which is proportional to the total entropy production within the heat exchanger. A lumped-parameter model of the heat exchanger allows to define the thermodynamic control scheme, with geometric control principles, a high-gain observer and an anti-windup scheme, which provides robustness against parametric uncertainties and disturbances. To make a comparison with classical control schemes, a Ziegler–Nichols PID controller was tuned for a First Order Plus Dead Time plant approximation. The experimental setup used a National Instruments Compact FieldPoint controller, and the control scheme was programmed in a LabVIEW interface. The performance of the proposed controller was tested under two criteria: energetic performance and total tracking control error. The results show that the classical controller has a better energy-saving performance, while the thermodynamic controller has a better tracking performance, making it more suitable for applications where temperature control needs to be more precise.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.