Aya Chelh, Boutaina Akenoun, Smahane Dahbi, Hamid Ez-Zahraouy
{"title":"First-principles calculations to investigate photovoltaic, photocatalytic, and spintronic properties of Fe-doped and alloyed MgSiO3 perovskite","authors":"Aya Chelh, Boutaina Akenoun, Smahane Dahbi, Hamid Ez-Zahraouy","doi":"10.1016/j.jpcs.2025.112773","DOIUrl":null,"url":null,"abstract":"<div><div>The structural, electronic, optical, and photocatalytic properties of pure and iron (Fe)-doped and alloyed MgSiO<sub>3</sub> at silicon (Si) site have been explored using the first-principles calculations based on density functional theory. The results reveal a band gap of 9.10 eV for pure MgSiO<sub>3</sub>, obtained using the PBE-GGA approximation combined with the mBJ potential. The results show that the doped compounds (MgSi<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>Fe<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> where x = 0.16 and 0.33) behave as p-type semiconductors with a direct band gap. However, when MgSiO<sub>3</sub> compound is heavily doped, with concentrations reaching between x = 0.83 and x = 1, it exhibits as a semiconductor with an indirect band gap. Moreover, the total substitution (x = 1) of Si by Fe in MgSiO<sub>3</sub> leads to a significant reduction in the band gap value, from 9.10 eV for pure MgSiO<sub>3</sub> (x = 0) to 1.36 eV for MgFeO<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> (x = 1). This decrease leads to the increase of the absorption coefficient in the visible region, reaching more than <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>. According to thermodynamic analysis based on the enthalpy of formation, every structure under study is stable. Furthermore, the compounds also showed promise in splitting water to generate hydrogen especially at x = 0.16 and x = 0.33 concentrations. The magnetic characteristics calculations prove a useful use of the doped compounds in the spintronics applications. These results suggest that the Fe doped-MgSiO<sub>3</sub> compounds can be used in photovoltaic, photocatalytic, and, spintronic devices, opening up promising prospects for various technological applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"205 ","pages":"Article 112773"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725002252","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The structural, electronic, optical, and photocatalytic properties of pure and iron (Fe)-doped and alloyed MgSiO3 at silicon (Si) site have been explored using the first-principles calculations based on density functional theory. The results reveal a band gap of 9.10 eV for pure MgSiO3, obtained using the PBE-GGA approximation combined with the mBJ potential. The results show that the doped compounds (MgSiFeO where x = 0.16 and 0.33) behave as p-type semiconductors with a direct band gap. However, when MgSiO3 compound is heavily doped, with concentrations reaching between x = 0.83 and x = 1, it exhibits as a semiconductor with an indirect band gap. Moreover, the total substitution (x = 1) of Si by Fe in MgSiO3 leads to a significant reduction in the band gap value, from 9.10 eV for pure MgSiO3 (x = 0) to 1.36 eV for MgFeO (x = 1). This decrease leads to the increase of the absorption coefficient in the visible region, reaching more than . According to thermodynamic analysis based on the enthalpy of formation, every structure under study is stable. Furthermore, the compounds also showed promise in splitting water to generate hydrogen especially at x = 0.16 and x = 0.33 concentrations. The magnetic characteristics calculations prove a useful use of the doped compounds in the spintronics applications. These results suggest that the Fe doped-MgSiO3 compounds can be used in photovoltaic, photocatalytic, and, spintronic devices, opening up promising prospects for various technological applications.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.