Niloofar Alahdad , Shayesteh Kokabi Hamidpour , Mohammad Ali Yazdanpanah , Mobina Amiri , Rafieh Alizadeh , Seyed Mahdi Rezayat , Shima Tavakol
{"title":"Nitric oxide synthases: A delicate dance between bone regeneration and neuronal birth","authors":"Niloofar Alahdad , Shayesteh Kokabi Hamidpour , Mohammad Ali Yazdanpanah , Mobina Amiri , Rafieh Alizadeh , Seyed Mahdi Rezayat , Shima Tavakol","doi":"10.1016/j.biopha.2025.118105","DOIUrl":null,"url":null,"abstract":"<div><div>Spinal cord injury (SCI) is a devastating condition resulting from traumatic or nontraumatic injury/chronic disorder. The pathogenesis of SCI necessitates a comprehensive approach, as it involves therapeutic strategies addressing both bone (spine) and neural (spinal cord) damage. This review centers on the pivotal role of nitric oxide (NO) and its synthesizing enzymes, nitric oxide synthases (NOS), in mediating the crosstalk between osteogenesis and neurogenesis. NO's effects are context-dependent, exhibiting a delicate balance between beneficial and detrimental actions. Reduced levels of nitric oxide (NO), primarily derived from endothelial NOS (eNOS), tipically stimulate osteoblast activity and promote neurogenesis by influencing neural stem cell (NSC) migration and differentiation. Conversely, elevated NO levels, predominantly from inducible NOS (iNOS), tipically triggered by inflammation, inhibit both processes through pro-apoptotic mechanisms. Nevertheless, these phenomena are not merely simplistic; they can be influenced by a variety of other factors. We explore the intricate interplay of NO/NOS with key signaling pathways crucial in neurogenesis and osteogenesis, including mechanical stimuli, Wnt, interleukins, BMPs, NF-κB, etc., revealing their influence on neuroinflammation, neurogenesis, and osteoblast differentiation. The temporal and spatial dynamics of NO/NOS activity and the implications for therapeutic intervention have been discussed. Precise modulation of NO levels and NOS isoforms, potentially through targeted therapies manipulating these interacting signaling pathways, emerges as a promising strategy for promoting bone and neural regeneration. This review highlights the critical need for a balanced approach in therapeutic strategies to harness the beneficial effects of NO/NOS while mitigating its detrimental consequences.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"187 ","pages":"Article 118105"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225002999","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal cord injury (SCI) is a devastating condition resulting from traumatic or nontraumatic injury/chronic disorder. The pathogenesis of SCI necessitates a comprehensive approach, as it involves therapeutic strategies addressing both bone (spine) and neural (spinal cord) damage. This review centers on the pivotal role of nitric oxide (NO) and its synthesizing enzymes, nitric oxide synthases (NOS), in mediating the crosstalk between osteogenesis and neurogenesis. NO's effects are context-dependent, exhibiting a delicate balance between beneficial and detrimental actions. Reduced levels of nitric oxide (NO), primarily derived from endothelial NOS (eNOS), tipically stimulate osteoblast activity and promote neurogenesis by influencing neural stem cell (NSC) migration and differentiation. Conversely, elevated NO levels, predominantly from inducible NOS (iNOS), tipically triggered by inflammation, inhibit both processes through pro-apoptotic mechanisms. Nevertheless, these phenomena are not merely simplistic; they can be influenced by a variety of other factors. We explore the intricate interplay of NO/NOS with key signaling pathways crucial in neurogenesis and osteogenesis, including mechanical stimuli, Wnt, interleukins, BMPs, NF-κB, etc., revealing their influence on neuroinflammation, neurogenesis, and osteoblast differentiation. The temporal and spatial dynamics of NO/NOS activity and the implications for therapeutic intervention have been discussed. Precise modulation of NO levels and NOS isoforms, potentially through targeted therapies manipulating these interacting signaling pathways, emerges as a promising strategy for promoting bone and neural regeneration. This review highlights the critical need for a balanced approach in therapeutic strategies to harness the beneficial effects of NO/NOS while mitigating its detrimental consequences.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.