Chelsea E. Harris , Lingling Liu , Luiz Almeida , Carolina Kassick , Sokratis Makrogiannis
{"title":"Artificial intelligence in pediatric osteopenia diagnosis: evaluating deep network classification and model interpretability using wrist X-rays","authors":"Chelsea E. Harris , Lingling Liu , Luiz Almeida , Carolina Kassick , Sokratis Makrogiannis","doi":"10.1016/j.bonr.2025.101845","DOIUrl":null,"url":null,"abstract":"<div><div>Osteopenia is a bone disorder that causes low bone density and affects millions of people worldwide. Diagnosis of this condition is commonly achieved through clinical assessment of bone mineral density (BMD). State of the art machine learning (ML) techniques, such as convolutional neural networks (CNNs) and transformer models, have gained increasing popularity in medicine. In this work, we employ six deep networks for osteopenia vs. healthy bone classification using X-ray imaging from the pediatric wrist dataset GRAZPEDWRI-DX. We apply two explainable AI techniques to analyze and interpret visual explanations for network decisions. Experimental results show that deep networks are able to effectively learn osteopenic and healthy bone features, achieving high classification accuracy rates. Among the six evaluated networks, DenseNet201 with transfer learning yielded the top classification accuracy at 95.2 %. Furthermore, visual explanations of CNN decisions provide valuable insight into the blackbox inner workings and present interpretable results. Our evaluation of deep network classification results highlights their capability to accurately differentiate between osteopenic and healthy bones in pediatric wrist X-rays. The combination of high classification accuracy and interpretable visual explanations underscores the promise of incorporating machine learning techniques into clinical workflows for the early and accurate diagnosis of osteopenia.</div></div>","PeriodicalId":9043,"journal":{"name":"Bone Reports","volume":"25 ","pages":"Article 101845"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352187225000221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Osteopenia is a bone disorder that causes low bone density and affects millions of people worldwide. Diagnosis of this condition is commonly achieved through clinical assessment of bone mineral density (BMD). State of the art machine learning (ML) techniques, such as convolutional neural networks (CNNs) and transformer models, have gained increasing popularity in medicine. In this work, we employ six deep networks for osteopenia vs. healthy bone classification using X-ray imaging from the pediatric wrist dataset GRAZPEDWRI-DX. We apply two explainable AI techniques to analyze and interpret visual explanations for network decisions. Experimental results show that deep networks are able to effectively learn osteopenic and healthy bone features, achieving high classification accuracy rates. Among the six evaluated networks, DenseNet201 with transfer learning yielded the top classification accuracy at 95.2 %. Furthermore, visual explanations of CNN decisions provide valuable insight into the blackbox inner workings and present interpretable results. Our evaluation of deep network classification results highlights their capability to accurately differentiate between osteopenic and healthy bones in pediatric wrist X-rays. The combination of high classification accuracy and interpretable visual explanations underscores the promise of incorporating machine learning techniques into clinical workflows for the early and accurate diagnosis of osteopenia.
Bone ReportsMedicine-Orthopedics and Sports Medicine
CiteScore
4.30
自引率
4.00%
发文量
444
审稿时长
57 days
期刊介绍:
Bone Reports is an interdisciplinary forum for the rapid publication of Original Research Articles and Case Reports across basic, translational and clinical aspects of bone and mineral metabolism. The journal publishes papers that are scientifically sound, with the peer review process focused principally on verifying sound methodologies, and correct data analysis and interpretation. We welcome studies either replicating or failing to replicate a previous study, and null findings. We fulfil a critical and current need to enhance research by publishing reproducibility studies and null findings.