Daniel Jovell , Gerard Alonso , Pablo Gamallo , Rafael Gonzalez-Olmos , Héctor Quinteros-Lama , Fèlix Llovell
{"title":"Combining molecular modelling approaches for a holistic thermophysical characterisation of fluorinated refrigerant blends","authors":"Daniel Jovell , Gerard Alonso , Pablo Gamallo , Rafael Gonzalez-Olmos , Héctor Quinteros-Lama , Fèlix Llovell","doi":"10.1016/j.ijrefrig.2025.03.026","DOIUrl":null,"url":null,"abstract":"<div><div>After Montreal Protocol, hydrofluorocarbons (HFCs) appeared to be a permanent solution for replacing previous ozone-depleting substances. However, their utilisation has now progressively decreased following the Kigali Amendment application in 2016 due to their high global warming potential (GWP). Unsaturated HFCs, such as hydrofluoroolefins (HFOs), are considered feasible alternatives due to their high reaction rates and low atmospheric lifetimes, resulting in very low GWP. However, available data on their physicochemical behaviour still needs to be improved, even with the recent increase in the amount of new experimental data for these systems. In this direction, computational tools provide a quick pathway to screen their properties and complete the information obtained from experimental work. In this contribution, two different molecular modelling tools, molecular dynamics (MD) simulations and the soft-SAFT equation of state (EOS), are combined to compute the coexistence densities, vapour pressure, heat capacity, interfacial tension, and dynamic viscosity of several refrigerant blends based on 3rd and 4th generation compounds, in order to provide a thermodynamic analysis of the properties of these mixtures, addressing them for drop-in replacement purposes. Results from MD are compared with REFPROP data and those from soft-SAFT, where the capacities of both modelling methods are addressed. In general, quantitative agreement is achieved using the two approaches, offering a framework to screen these properties for new mixtures.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"175 ","pages":"Pages 412-423"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700725001185","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
After Montreal Protocol, hydrofluorocarbons (HFCs) appeared to be a permanent solution for replacing previous ozone-depleting substances. However, their utilisation has now progressively decreased following the Kigali Amendment application in 2016 due to their high global warming potential (GWP). Unsaturated HFCs, such as hydrofluoroolefins (HFOs), are considered feasible alternatives due to their high reaction rates and low atmospheric lifetimes, resulting in very low GWP. However, available data on their physicochemical behaviour still needs to be improved, even with the recent increase in the amount of new experimental data for these systems. In this direction, computational tools provide a quick pathway to screen their properties and complete the information obtained from experimental work. In this contribution, two different molecular modelling tools, molecular dynamics (MD) simulations and the soft-SAFT equation of state (EOS), are combined to compute the coexistence densities, vapour pressure, heat capacity, interfacial tension, and dynamic viscosity of several refrigerant blends based on 3rd and 4th generation compounds, in order to provide a thermodynamic analysis of the properties of these mixtures, addressing them for drop-in replacement purposes. Results from MD are compared with REFPROP data and those from soft-SAFT, where the capacities of both modelling methods are addressed. In general, quantitative agreement is achieved using the two approaches, offering a framework to screen these properties for new mixtures.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.