{"title":"Data-driven frequency-domain iterative learning control with transfer learning","authors":"Yu-Hsiu Lee, Yu-Hsiang Chin, Chun-Yuan Hsueh","doi":"10.1016/j.mechatronics.2025.103327","DOIUrl":null,"url":null,"abstract":"<div><div>Data-driven iterative learning control (ILC) can achieve improved tracking performance over model-based ILC by eliminating the fitting error from parametric system representations. Existing data-driven approaches in frequency domain take advantage of the affordability and speed associated with acquiring non-parametric frequency response function data for effective learning. However, the quality of data significantly influences the achievable performance. Additionally, a notable drawback is that learning is reset whenever the tracked trajectory changes, despite having learned similar frequency contents before. Extending these approaches to multivariate systems with non-negligible coupling is also not straightforward. This paper aims to address the aforementioned challenges in data-driven ILC by employing spectral analysis (SA), which improves the learned data-driven inversion by mitigating the measurement noise. Fast and robust convergence is made possible through an iteration-varying learning gain. Also proposed is a transfer learning strategy in the frequency domain, wherein the inversion learned in specific frequency bin(s) will be preserved and utilized to expedite convergence in subsequent tasks. The presented ILC algorithm based on SA naturally extends to the multi-input multi-output (MIMO) framework, and the convergence can be ensured by complex-valued matrix analysis. The methodology is experimentally validated on a galvanometer for the SISO case and an H-type dual-drive gantry system for the MIMO case, demonstrating enhanced performance, transfer learning capabilities, and applicability to MIMO systems.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"108 ","pages":"Article 103327"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415825000364","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Data-driven iterative learning control (ILC) can achieve improved tracking performance over model-based ILC by eliminating the fitting error from parametric system representations. Existing data-driven approaches in frequency domain take advantage of the affordability and speed associated with acquiring non-parametric frequency response function data for effective learning. However, the quality of data significantly influences the achievable performance. Additionally, a notable drawback is that learning is reset whenever the tracked trajectory changes, despite having learned similar frequency contents before. Extending these approaches to multivariate systems with non-negligible coupling is also not straightforward. This paper aims to address the aforementioned challenges in data-driven ILC by employing spectral analysis (SA), which improves the learned data-driven inversion by mitigating the measurement noise. Fast and robust convergence is made possible through an iteration-varying learning gain. Also proposed is a transfer learning strategy in the frequency domain, wherein the inversion learned in specific frequency bin(s) will be preserved and utilized to expedite convergence in subsequent tasks. The presented ILC algorithm based on SA naturally extends to the multi-input multi-output (MIMO) framework, and the convergence can be ensured by complex-valued matrix analysis. The methodology is experimentally validated on a galvanometer for the SISO case and an H-type dual-drive gantry system for the MIMO case, demonstrating enhanced performance, transfer learning capabilities, and applicability to MIMO systems.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.