{"title":"Efficient reliability analysis for offshore wind turbines: Leveraging SVM and augmented oversampling technique","authors":"Xukai Zhang, Arash Noshadravan","doi":"10.1016/j.strusafe.2025.102597","DOIUrl":null,"url":null,"abstract":"<div><div>This study develops an efficient reliability assessment method designed to optimize maintenance strategies for Offshore Wind Turbines (OWT), aiming for significant cost savings through reduced maintenance frequency and enhanced efficiency. Effective cost management requires a robust and accurate approach for reliability-based lifecycle management. Therefore, this paper introduces an improved predictive maintenance method, grounded on the reliability-based failure probability of OWT systems. To augment computational efficiency and diminish computational time, a surrogate model is proposed for the estimation of failure probability. This surrogate model integrates the classification strengths of Support Vector Machine (SVM) with an augmented Synthetic Minority Oversampling Technique (SMOTE), specifically adapted for extremely imbalanced data. The study’s contributions are twofold: firstly, it develops a novel reliability-based predictive maintenance method allowing for the quantitative assessment of OWTs’ current conditions; secondly, it presents a surrogate model adept at managing extreme data imbalance, thereby enhancing prediction accuracy. The effectiveness of the surrogate model is validated through a case study under two distinct weather conditions. The proposed predictive maintenance method serves as an efficient and effective tool for improved maintenance planning for OWTs.</div></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"115 ","pages":"Article 102597"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473025000256","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This study develops an efficient reliability assessment method designed to optimize maintenance strategies for Offshore Wind Turbines (OWT), aiming for significant cost savings through reduced maintenance frequency and enhanced efficiency. Effective cost management requires a robust and accurate approach for reliability-based lifecycle management. Therefore, this paper introduces an improved predictive maintenance method, grounded on the reliability-based failure probability of OWT systems. To augment computational efficiency and diminish computational time, a surrogate model is proposed for the estimation of failure probability. This surrogate model integrates the classification strengths of Support Vector Machine (SVM) with an augmented Synthetic Minority Oversampling Technique (SMOTE), specifically adapted for extremely imbalanced data. The study’s contributions are twofold: firstly, it develops a novel reliability-based predictive maintenance method allowing for the quantitative assessment of OWTs’ current conditions; secondly, it presents a surrogate model adept at managing extreme data imbalance, thereby enhancing prediction accuracy. The effectiveness of the surrogate model is validated through a case study under two distinct weather conditions. The proposed predictive maintenance method serves as an efficient and effective tool for improved maintenance planning for OWTs.
期刊介绍:
Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment