Efficient reliability analysis for offshore wind turbines: Leveraging SVM and augmented oversampling technique

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Xukai Zhang, Arash Noshadravan
{"title":"Efficient reliability analysis for offshore wind turbines: Leveraging SVM and augmented oversampling technique","authors":"Xukai Zhang,&nbsp;Arash Noshadravan","doi":"10.1016/j.strusafe.2025.102597","DOIUrl":null,"url":null,"abstract":"<div><div>This study develops an efficient reliability assessment method designed to optimize maintenance strategies for Offshore Wind Turbines (OWT), aiming for significant cost savings through reduced maintenance frequency and enhanced efficiency. Effective cost management requires a robust and accurate approach for reliability-based lifecycle management. Therefore, this paper introduces an improved predictive maintenance method, grounded on the reliability-based failure probability of OWT systems. To augment computational efficiency and diminish computational time, a surrogate model is proposed for the estimation of failure probability. This surrogate model integrates the classification strengths of Support Vector Machine (SVM) with an augmented Synthetic Minority Oversampling Technique (SMOTE), specifically adapted for extremely imbalanced data. The study’s contributions are twofold: firstly, it develops a novel reliability-based predictive maintenance method allowing for the quantitative assessment of OWTs’ current conditions; secondly, it presents a surrogate model adept at managing extreme data imbalance, thereby enhancing prediction accuracy. The effectiveness of the surrogate model is validated through a case study under two distinct weather conditions. The proposed predictive maintenance method serves as an efficient and effective tool for improved maintenance planning for OWTs.</div></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"115 ","pages":"Article 102597"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473025000256","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This study develops an efficient reliability assessment method designed to optimize maintenance strategies for Offshore Wind Turbines (OWT), aiming for significant cost savings through reduced maintenance frequency and enhanced efficiency. Effective cost management requires a robust and accurate approach for reliability-based lifecycle management. Therefore, this paper introduces an improved predictive maintenance method, grounded on the reliability-based failure probability of OWT systems. To augment computational efficiency and diminish computational time, a surrogate model is proposed for the estimation of failure probability. This surrogate model integrates the classification strengths of Support Vector Machine (SVM) with an augmented Synthetic Minority Oversampling Technique (SMOTE), specifically adapted for extremely imbalanced data. The study’s contributions are twofold: firstly, it develops a novel reliability-based predictive maintenance method allowing for the quantitative assessment of OWTs’ current conditions; secondly, it presents a surrogate model adept at managing extreme data imbalance, thereby enhancing prediction accuracy. The effectiveness of the surrogate model is validated through a case study under two distinct weather conditions. The proposed predictive maintenance method serves as an efficient and effective tool for improved maintenance planning for OWTs.
海上风力发电机的高效可靠性分析:利用支持向量机和增广过采样技术
本研究开发了一种有效的可靠性评估方法,旨在优化海上风力涡轮机(OWT)的维护策略,旨在通过减少维护频率和提高效率来显著节省成本。有效的成本管理需要基于可靠性的生命周期管理的稳健和准确的方法。因此,本文以OWT系统基于可靠性的故障概率为基础,提出了一种改进的预测性维修方法。为了提高计算效率和减少计算时间,提出了一种失效概率估计的替代模型。该代理模型将支持向量机(SVM)的分类优势与增强型合成少数过采样技术(SMOTE)相结合,特别适用于极度不平衡的数据。该研究的贡献有两个方面:首先,它开发了一种新的基于可靠性的预测性维护方法,允许对owt的当前状况进行定量评估;其次,提出了一种能够处理极端数据不平衡的代理模型,从而提高了预测精度。通过两种不同天气条件下的案例研究,验证了代理模型的有效性。提出的预测维修方法是改进维修计划的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Safety
Structural Safety 工程技术-工程:土木
CiteScore
11.30
自引率
8.60%
发文量
67
审稿时长
53 days
期刊介绍: Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信