The probabilistic inverse problem and its solving method based on probability density evolution theory and convex optimization algorithms

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Yuhan Zhu, Jie Li
{"title":"The probabilistic inverse problem and its solving method based on probability density evolution theory and convex optimization algorithms","authors":"Yuhan Zhu,&nbsp;Jie Li","doi":"10.1016/j.strusafe.2025.102600","DOIUrl":null,"url":null,"abstract":"<div><div>A probabilistic inverse problem-solving method based on the framework of Probability Density Evolution Theory and convex optimization algorithms is proposed. This method reformulates the identification of the random source as a quadratic programming problem with linear constraints, identifying the probability density function of the random source in a physical stochastic system even when the distribution type of the random source is entirely unknown. Through singular value decomposition of the quadratic matrix, an error analysis is performed, revealing that the solvability of the probabilistic inverse problem fundamentally depends on the injectivity of the mapping from the random source space to the response space. Case studies confirm that the proposed method is not sensitive to prior information and does not require any predefined assumptions about the distribution type. Meanwhile, it can preliminarily determine whether the inverse problem is solvable before the computational process begins.</div></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"115 ","pages":"Article 102600"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473025000281","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

A probabilistic inverse problem-solving method based on the framework of Probability Density Evolution Theory and convex optimization algorithms is proposed. This method reformulates the identification of the random source as a quadratic programming problem with linear constraints, identifying the probability density function of the random source in a physical stochastic system even when the distribution type of the random source is entirely unknown. Through singular value decomposition of the quadratic matrix, an error analysis is performed, revealing that the solvability of the probabilistic inverse problem fundamentally depends on the injectivity of the mapping from the random source space to the response space. Case studies confirm that the proposed method is not sensitive to prior information and does not require any predefined assumptions about the distribution type. Meanwhile, it can preliminarily determine whether the inverse problem is solvable before the computational process begins.
基于概率密度演化理论和凸优化算法的概率反问题及其求解方法
提出了一种基于概率密度演化理论和凸优化算法框架的概率逆问题求解方法。该方法将随机源的识别重新表述为具有线性约束的二次规划问题,即使在随机源的分布类型完全未知的情况下,也能识别物理随机系统中随机源的概率密度函数。通过对二次矩阵的奇异值分解进行误差分析,揭示了概率逆问题的可解性从根本上取决于随机源空间到响应空间的映射的注入性。案例研究证实,所提出的方法对先验信息不敏感,并且不需要对分布类型进行任何预定义的假设。同时,可以在计算过程开始前初步判断逆问题是否可解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Safety
Structural Safety 工程技术-工程:土木
CiteScore
11.30
自引率
8.60%
发文量
67
审稿时长
53 days
期刊介绍: Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信