L. Kuchler , A. Azimi , H. Damiri , S. Martinuzzi , M. Steinberger , J. Rehrl , J. Poms , M. Kureck , D. Kirschneck , M. Horn , J. Khinast , S. Sacher
{"title":"A universal digital control concept for end-to-end manufacturing","authors":"L. Kuchler , A. Azimi , H. Damiri , S. Martinuzzi , M. Steinberger , J. Rehrl , J. Poms , M. Kureck , D. Kirschneck , M. Horn , J. Khinast , S. Sacher","doi":"10.1016/j.ijpharm.2025.125599","DOIUrl":null,"url":null,"abstract":"<div><div>With the implementation of advanced manufacturing concepts (e.g., continuous operation, integration of different process routes and modular manufacturing), control of the process and the related product quality becomes more complex. Unlike traditional in-process controls and end-product testing, modern high-speed manufacturing does not allow for delays due to measurements between unit operations and requires real-time information about the material state and associated control actions. This study presents a universally applicable control concept, which offers the highest level of control together with flexibility for processing, equipment and automation. The concept can deal with a combination of batch and continuously operated process steps, manual and automated operation, different scales of equipment, and digital and manual data acquisition. It was demonstrated using a compact end-to-end manufacturing line for tablets, which included the active pharmaceutical ingredient (API) synthesis, crystallization, filtration and washing, as well as the formulation part. A suspension of API was directly fed into hot melt extrusion (HME), which was combined with direct compaction (DC). The control strategy was based on data not only from classical process analytical technology (PAT) sensors, but also from the equipment and soft sensors (e.g., the content was monitored and controlled using the soft sensors and the feeder data). The process and quality information were fed into a digital twin of the entire process, which executed the model-based control strategy.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"676 ","pages":"Article 125599"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325004363","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
With the implementation of advanced manufacturing concepts (e.g., continuous operation, integration of different process routes and modular manufacturing), control of the process and the related product quality becomes more complex. Unlike traditional in-process controls and end-product testing, modern high-speed manufacturing does not allow for delays due to measurements between unit operations and requires real-time information about the material state and associated control actions. This study presents a universally applicable control concept, which offers the highest level of control together with flexibility for processing, equipment and automation. The concept can deal with a combination of batch and continuously operated process steps, manual and automated operation, different scales of equipment, and digital and manual data acquisition. It was demonstrated using a compact end-to-end manufacturing line for tablets, which included the active pharmaceutical ingredient (API) synthesis, crystallization, filtration and washing, as well as the formulation part. A suspension of API was directly fed into hot melt extrusion (HME), which was combined with direct compaction (DC). The control strategy was based on data not only from classical process analytical technology (PAT) sensors, but also from the equipment and soft sensors (e.g., the content was monitored and controlled using the soft sensors and the feeder data). The process and quality information were fed into a digital twin of the entire process, which executed the model-based control strategy.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.