Min Sun , Zhiwei Qiu , Qiang Chen , Hongshuai Lei , Zheng Zhang , Yi Song , Shaofei Jiang , Jiayang Zhao , Haonan Fu
{"title":"A Mechanical Metamaterial for Energy Absorption using Carbon Fiber Composite","authors":"Min Sun , Zhiwei Qiu , Qiang Chen , Hongshuai Lei , Zheng Zhang , Yi Song , Shaofei Jiang , Jiayang Zhao , Haonan Fu","doi":"10.1016/j.ijmecsci.2025.110282","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanical metamaterials are usually prepared using additive manufacturing process, which limits the dynamic tuning of their mechanical properties after preparation. In this study, a mechanical metamaterial was designed using carbon fiber composites, and prepared by hot-pressing process as well as assembled by discrete assembly method. By leveraging the inherent anisotropic properties of the material, a single structure achieved both multi-stable and mono-stable characteristics. A torsion inhibition method based on modular design was employed to inhibit the overall torsion angle of the structure and improve the stability of structures under compression. The mechanical properties of structure under compression and impact were simulated using the finite element method. The simulation results are in good agreement with the experiment data, indicating that the torsion inhibition method effectively reduced the torsion angle. The effects of drilling spacing <em>l</em>, ply angle <em>α</em>, and helix radius <em>r</em> on the mechanical properties were also been studied. Under the multi-stable characteristic of the structure, energy absorption was achieved by overcoming its energy barriers, demonstrating great potential in cushioning and energy absorption applications.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"295 ","pages":"Article 110282"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325003686","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanical metamaterials are usually prepared using additive manufacturing process, which limits the dynamic tuning of their mechanical properties after preparation. In this study, a mechanical metamaterial was designed using carbon fiber composites, and prepared by hot-pressing process as well as assembled by discrete assembly method. By leveraging the inherent anisotropic properties of the material, a single structure achieved both multi-stable and mono-stable characteristics. A torsion inhibition method based on modular design was employed to inhibit the overall torsion angle of the structure and improve the stability of structures under compression. The mechanical properties of structure under compression and impact were simulated using the finite element method. The simulation results are in good agreement with the experiment data, indicating that the torsion inhibition method effectively reduced the torsion angle. The effects of drilling spacing l, ply angle α, and helix radius r on the mechanical properties were also been studied. Under the multi-stable characteristic of the structure, energy absorption was achieved by overcoming its energy barriers, demonstrating great potential in cushioning and energy absorption applications.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.