Interfacial nanoarchitectonics of SiOx via CVD carbon coating and vapor-phase polymerized PEDOT for enhanced lithium-ion battery anode performance

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Yu-Sheng Hsiao , Hsueh-Sheng Tseng , Lin-Yang Weng , Sheng-Wei Liao , Jen-Hsien Huang , Wei Kong Pang , Shih-Chieh Hsu , Huei Chu Weng , Yu-Ching Huang
{"title":"Interfacial nanoarchitectonics of SiOx via CVD carbon coating and vapor-phase polymerized PEDOT for enhanced lithium-ion battery anode performance","authors":"Yu-Sheng Hsiao ,&nbsp;Hsueh-Sheng Tseng ,&nbsp;Lin-Yang Weng ,&nbsp;Sheng-Wei Liao ,&nbsp;Jen-Hsien Huang ,&nbsp;Wei Kong Pang ,&nbsp;Shih-Chieh Hsu ,&nbsp;Huei Chu Weng ,&nbsp;Yu-Ching Huang","doi":"10.1016/j.jtice.2025.106148","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Thanks to the high theoretical capacity, silicon oxides (SiO<sub>x</sub>) hold great potential as anode materials for the next-generation high-performance lithium-ion batteries (LIBs). However, the low conductivity and substantial volume fluctuations of SiO<sub>x</sub> result in significant polarization and rapid capacity fading, greatly hindering its electrochemical performance and practical application.</div></div><div><h3>Methods</h3><div>To overcome the inherent challenges of SiO<sub>x</sub>, herein, a dual surface modification consisting of a carbon layer and conducting polymer layer is coated on SiO<sub>x</sub>. The process involves chemical vapor deposition (CVD) with C<sub>2</sub>H<sub>2</sub> as the carbon source, followed by vapor-phase polymerization (VPP) to form high-quality carbon and poly(3,4-ethylenedioxythiophene) (PEDOT) layers on SiO<sub>x</sub>.</div></div><div><h3>Significant findings</h3><div>The dual-modified layers provide the resulting SiO<sub>x</sub> with enhanced electrical conductivity and improved structural stability. The modified SiO<sub>x</sub> demonstrates a high charge capacity of 1660.1 mAh/g at 0.1C, remarkable rate performance with the charge capacity of 945.0 mAh/g at 3C, and superior cycling span (∼812.7 mAh/g over 200 cycles). In addition, the modified SiO<sub>x</sub> demonstrates excellent compatibility with conventional graphite (GP) anode material, significantly enhancing its electrochemical performance.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"173 ","pages":"Article 106148"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025002019","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Thanks to the high theoretical capacity, silicon oxides (SiOx) hold great potential as anode materials for the next-generation high-performance lithium-ion batteries (LIBs). However, the low conductivity and substantial volume fluctuations of SiOx result in significant polarization and rapid capacity fading, greatly hindering its electrochemical performance and practical application.

Methods

To overcome the inherent challenges of SiOx, herein, a dual surface modification consisting of a carbon layer and conducting polymer layer is coated on SiOx. The process involves chemical vapor deposition (CVD) with C2H2 as the carbon source, followed by vapor-phase polymerization (VPP) to form high-quality carbon and poly(3,4-ethylenedioxythiophene) (PEDOT) layers on SiOx.

Significant findings

The dual-modified layers provide the resulting SiOx with enhanced electrical conductivity and improved structural stability. The modified SiOx demonstrates a high charge capacity of 1660.1 mAh/g at 0.1C, remarkable rate performance with the charge capacity of 945.0 mAh/g at 3C, and superior cycling span (∼812.7 mAh/g over 200 cycles). In addition, the modified SiOx demonstrates excellent compatibility with conventional graphite (GP) anode material, significantly enhancing its electrochemical performance.

Abstract Image

通过CVD碳涂层和气相聚合PEDOT增强锂离子电池负极性能的SiOx界面纳米结构
由于具有较高的理论容量,硅氧化物(SiOx)作为下一代高性能锂离子电池(LIBs)的负极材料具有很大的潜力。然而,SiOx的低电导率和较大的体积波动导致了明显的极化和快速的容量衰减,极大地阻碍了其电化学性能和实际应用。方法为了克服SiOx的固有挑战,在SiOx表面涂覆由碳层和导电聚合物层组成的双重表面改性。该工艺包括以C2H2为碳源的化学气相沉积(CVD),然后通过气相聚合(VPP)在SiOx上形成高质量的碳和聚(3,4-乙烯二氧噻吩)(PEDOT)层。重要发现:双改性层提高了SiOx的导电性和结构稳定性。改性SiOx在0.1C时的充电容量为1660.1 mAh/g,在3C时的充电容量为945.0 mAh/g,具有卓越的倍率性能,并且具有优异的循环时间(200次循环约812.7 mAh/g)。此外,改性SiOx与传统石墨(GP)负极材料具有良好的相容性,显著提高了其电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信