Scott Ian Frank , Ramanamurthy V. Mylavarapu , Eva Widerstrom-Noga , Roberta Vastano
{"title":"Early body representation EEG signals in cervical vs. thoracic spinal cord injuries with neuropathic pain","authors":"Scott Ian Frank , Ramanamurthy V. Mylavarapu , Eva Widerstrom-Noga , Roberta Vastano","doi":"10.1016/j.brainres.2025.149658","DOIUrl":null,"url":null,"abstract":"<div><div>Spinal cord injury (SCI) not only causes severe sensorimotor impairments but also leads to disruptions in body representation, including body schema. While the neurological differences between cervical and thoracic injuries are well established, the impact of the level of injury on body schema is less understood. Deeper insights into how change in body schema is affected by injury severity may further individual rehabilitation strategies and outcomes for individuals with SCI. This study explores event-related potentials (ERPs) between individuals with cervical and thoracic injuries in response to body-related and non-body-related stimuli presented in two rotation angles (easy: 75° and difficult: 150°) while completing a laterality judgment task. Individuals with cervical injury showed reduced amplitudes of posterior P100 and anterior N100 compared to the thoracic group only when the body-related stimuli were presented in a difficult rotation angle. We discuss that the variations in early modulation of ERPs can be attributed to the underlying sensorimotor challenges associated with different levels of injury. This work enhances our understanding of cognitive processing in SCI populations to better inform rehabilitation strategies.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1858 ","pages":"Article 149658"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899325002173","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal cord injury (SCI) not only causes severe sensorimotor impairments but also leads to disruptions in body representation, including body schema. While the neurological differences between cervical and thoracic injuries are well established, the impact of the level of injury on body schema is less understood. Deeper insights into how change in body schema is affected by injury severity may further individual rehabilitation strategies and outcomes for individuals with SCI. This study explores event-related potentials (ERPs) between individuals with cervical and thoracic injuries in response to body-related and non-body-related stimuli presented in two rotation angles (easy: 75° and difficult: 150°) while completing a laterality judgment task. Individuals with cervical injury showed reduced amplitudes of posterior P100 and anterior N100 compared to the thoracic group only when the body-related stimuli were presented in a difficult rotation angle. We discuss that the variations in early modulation of ERPs can be attributed to the underlying sensorimotor challenges associated with different levels of injury. This work enhances our understanding of cognitive processing in SCI populations to better inform rehabilitation strategies.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.