Xiaoqing Li , Jacob R. Lindale , Loren L. Smith , Warren S. Warren
{"title":"Investigation of 15N-SABRE hyperpolarization at high pressures and in supercritical fluids","authors":"Xiaoqing Li , Jacob R. Lindale , Loren L. Smith , Warren S. Warren","doi":"10.1016/j.jmr.2025.107876","DOIUrl":null,"url":null,"abstract":"<div><div>Signal Amplification By Reversible Exchange (SABRE) is a parahydrogen-based hyperpolarization technique that can generate orders-of-magnitude larger signals than thermal spin polarization within a minute. However, this method is limited by the availability of parahydrogen to the solution. Previous work demonstrated SABRE-derived <sup>1</sup>H hyperpolarization at pressures up to 200 bar and using liquid carbon dioxide as a solvent. Here, we extend this work to demonstrate heteronuclear (<sup>15</sup>N) SABRE hyperpolarization using conventional solvents with hydrogen pressures up to 400 bar as well as the possibility of using supercritical CO<sub>2</sub> as the solvent. We demonstrate that in both modes, <sup>15</sup>N hyperpolarization comparable to SABRE-SHEATH may be achieved, providing a route for future optimization efforts as well as scale-up. We also present first steps towards exploring SABRE hyperpolarization of <sup>129</sup>Xe.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"375 ","pages":"Article 107876"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725000485","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Signal Amplification By Reversible Exchange (SABRE) is a parahydrogen-based hyperpolarization technique that can generate orders-of-magnitude larger signals than thermal spin polarization within a minute. However, this method is limited by the availability of parahydrogen to the solution. Previous work demonstrated SABRE-derived 1H hyperpolarization at pressures up to 200 bar and using liquid carbon dioxide as a solvent. Here, we extend this work to demonstrate heteronuclear (15N) SABRE hyperpolarization using conventional solvents with hydrogen pressures up to 400 bar as well as the possibility of using supercritical CO2 as the solvent. We demonstrate that in both modes, 15N hyperpolarization comparable to SABRE-SHEATH may be achieved, providing a route for future optimization efforts as well as scale-up. We also present first steps towards exploring SABRE hyperpolarization of 129Xe.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.