Performance assessment of two-step solar thermochemical fuel production systems with a transient multi-scale model

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Lei Zhao , Da Xu , Shuai Deng , Meng Lin
{"title":"Performance assessment of two-step solar thermochemical fuel production systems with a transient multi-scale model","authors":"Lei Zhao ,&nbsp;Da Xu ,&nbsp;Shuai Deng ,&nbsp;Meng Lin","doi":"10.1016/j.enconman.2025.119821","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the performance of solar thermochical hydrogen production systems across a range of operational conditions and material candidates. The objective is to guide the design of efficient reactor and enable rapid screening of promising redox materials. A multi-scale modeling framework is developed by integrating a system-level model, which includes heat exchangers and gas separation, with a detailed multi-physical model for a generic packed bed reactor. The transient multi-physical model incorporates fluid flow, heat transfer, mass transfer, and thermochemical reactions to enable more accurate performance predictions. Results show that solar irradiation direction perpendicular to the fluid flow minimizes temperature gradients, achieving a temperature difference as low as 49 K. A porosity of 0.75 results in the highest<!--> <span><math><msub><mi>η</mi><mtext>STF</mtext></msub></math></span> and improving gas-phase heat recovery efficiency from 0.75 to 0.95 leads to an 18.9 % increase in <span><math><msub><mi>η</mi><mtext>STF</mtext></msub></math></span>.<!--> <!-->Under identical conditions, CeO<sub>2</sub> exhibited the highest hydrogen production at 3.8 mL/g, while Zr<sub>15</sub>Ce<sub>0.85</sub>O<sub>2</sub> produced 3.0 mL/g and La<sub>0.6</sub>Ca<sub>0.4</sub>Mn<sub>0.6</sub>Al<sub>0.4</sub>O<sub>3</sub> produced 1.3 mL/g due to slower oxidation kinetics. The transient model also predicts the reactor’s performance evolution over a 30-year operational cycle, considering optical and material degradation, enabling the assessment of long-term reliability and guiding future system designs.<!--> <!-->This study provides a comprehensive framework for reactor optimization, advancing the practical implementation and scalability of solar thermochemical fuel production technologies.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"334 ","pages":"Article 119821"},"PeriodicalIF":9.9000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425003449","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the performance of solar thermochical hydrogen production systems across a range of operational conditions and material candidates. The objective is to guide the design of efficient reactor and enable rapid screening of promising redox materials. A multi-scale modeling framework is developed by integrating a system-level model, which includes heat exchangers and gas separation, with a detailed multi-physical model for a generic packed bed reactor. The transient multi-physical model incorporates fluid flow, heat transfer, mass transfer, and thermochemical reactions to enable more accurate performance predictions. Results show that solar irradiation direction perpendicular to the fluid flow minimizes temperature gradients, achieving a temperature difference as low as 49 K. A porosity of 0.75 results in the highest ηSTF and improving gas-phase heat recovery efficiency from 0.75 to 0.95 leads to an 18.9 % increase in ηSTF. Under identical conditions, CeO2 exhibited the highest hydrogen production at 3.8 mL/g, while Zr15Ce0.85O2 produced 3.0 mL/g and La0.6Ca0.4Mn0.6Al0.4O3 produced 1.3 mL/g due to slower oxidation kinetics. The transient model also predicts the reactor’s performance evolution over a 30-year operational cycle, considering optical and material degradation, enabling the assessment of long-term reliability and guiding future system designs. This study provides a comprehensive framework for reactor optimization, advancing the practical implementation and scalability of solar thermochemical fuel production technologies.
基于瞬态多尺度模型的两步太阳能热化学燃料生产系统性能评估
本研究调查了太阳能热化学制氢系统在一系列操作条件和候选材料中的性能。目的是指导高效反应器的设计,并能够快速筛选有前途的氧化还原材料。通过将包括换热器和气体分离在内的系统级模型与通用填料床反应器的详细多物理模型相结合,建立了一个多尺度建模框架。瞬态多物理模型包含流体流动、传热、传质和热化学反应,以实现更准确的性能预测。结果表明,垂直于流体流动方向的太阳辐照使温度梯度最小,温差低至49 K。孔隙率为0.75时,ηSTF最高,气相热回收效率从0.75提高到0.95,ηSTF提高18.9%。在相同的氧化条件下,CeO2的产氢量最高,为3.8 mL/g,而Zr15Ce0.85O2的产氢量为3.0 mL/g, La0.6Ca0.4Mn0.6Al0.4O3的产氢量为1.3 mL/g。瞬态模型还预测了反应堆在30年运行周期内的性能演变,考虑了光学和材料的退化,从而能够评估长期可靠性并指导未来的系统设计。该研究为反应堆优化提供了一个全面的框架,促进了太阳能热化学燃料生产技术的实际实施和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信