Manganese-based nanoadjuvants for the synergistic enhancement of immune responses in breast cancer therapy via disulfidptosis-induced ICD and cGAS-STING activation
{"title":"Manganese-based nanoadjuvants for the synergistic enhancement of immune responses in breast cancer therapy via disulfidptosis-induced ICD and cGAS-STING activation","authors":"Ke Zhang, Chengyao Huang, Yu Ren, Mingyue Zhang, Xiaotong Lu, Bangliu Yang, Peiran Chen, Shiyao Guo, Xueqian Wang, Yuhong Zhuo, Chao Qi, Kaiyong Cai","doi":"10.1016/j.biomaterials.2025.123359","DOIUrl":null,"url":null,"abstract":"<div><div>Tumor immunotherapy represents one of the most promising strategies for combating tumors by activating the immune system, harnessing anti-tumor immune cells to eliminate tumor cells, and preventing tumor recurrence and metastasis. However, clinical data indicate that the anti-tumor immune response is often inadequate in many cancer patients, resulting in the failure of tumor immunotherapy. Herein, we report a manganese (Mn)-based nanoadjuvant (denoted as BMP-Au) aimed at synergistically enhancing anti-tumor immune responses in breast cancer therapy through disulfidptosis-induced immunogenic cell death and Mn-mediated cGAS-STING pathway activation. BMP-Au is synthesized using bovine serum albumin as a biotemplate for biomimetic mineralization of manganese phosphate nanosheets, followed by the deposition of gold nanoparticles (Au NPs) on their surface. By exploiting the glucose oxidase-like activity of Au NPs alongside the Fenton-like reaction facilitated by Mn<sup>2+</sup>, BMP-Au orchestrates a cascade catalytic reaction that generates reactive oxygen species from glucose. This process not only initiates disulfidptosis but also leads to DNA fragmentation crucial for activating the cGAS-STING pathway. These concurrent mechanisms compromise cancer cell viability while significantly enhancing tumor immunogenicity, positioning BMP-Au as an innovative nanoadjuvant for cancer treatment that leverages both cellular stress mechanisms and immune activation.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"322 ","pages":"Article 123359"},"PeriodicalIF":12.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225002789","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor immunotherapy represents one of the most promising strategies for combating tumors by activating the immune system, harnessing anti-tumor immune cells to eliminate tumor cells, and preventing tumor recurrence and metastasis. However, clinical data indicate that the anti-tumor immune response is often inadequate in many cancer patients, resulting in the failure of tumor immunotherapy. Herein, we report a manganese (Mn)-based nanoadjuvant (denoted as BMP-Au) aimed at synergistically enhancing anti-tumor immune responses in breast cancer therapy through disulfidptosis-induced immunogenic cell death and Mn-mediated cGAS-STING pathway activation. BMP-Au is synthesized using bovine serum albumin as a biotemplate for biomimetic mineralization of manganese phosphate nanosheets, followed by the deposition of gold nanoparticles (Au NPs) on their surface. By exploiting the glucose oxidase-like activity of Au NPs alongside the Fenton-like reaction facilitated by Mn2+, BMP-Au orchestrates a cascade catalytic reaction that generates reactive oxygen species from glucose. This process not only initiates disulfidptosis but also leads to DNA fragmentation crucial for activating the cGAS-STING pathway. These concurrent mechanisms compromise cancer cell viability while significantly enhancing tumor immunogenicity, positioning BMP-Au as an innovative nanoadjuvant for cancer treatment that leverages both cellular stress mechanisms and immune activation.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.