Panfei Sun , Zhao Liu , Lin Yang , Qingfei Wang , David I. Groves , Chao Li , Huajian Li , Chaoyi Dong , Zhiqiang Xue , Zhongming Li , Jun Deng
{"title":"Formation of the rare Xiaoqinling Au-Mo province: Timings and geodynamic triggers","authors":"Panfei Sun , Zhao Liu , Lin Yang , Qingfei Wang , David I. Groves , Chao Li , Huajian Li , Chaoyi Dong , Zhiqiang Xue , Zhongming Li , Jun Deng","doi":"10.1016/j.gsf.2025.102052","DOIUrl":null,"url":null,"abstract":"<div><div>The timings and geodynamic controls of Mo, Au, and Au-Mo deposits in the Xiaoqinling Orogen (> 630 t Au and 115, 000 t Mo), a rare Au-Mo province globally, are addressed by a combination of mineral parageneses, crystalline mineralogy, geochemistry, and Re-Os and U-Pb geochronology in the Dahu, Qinnan, and Yangzhaiyu deposits. The Xiaoqinling Orogen comprises an E-W-trending fold and thrust system with repeated structural reactivation and the Mo or Au orebodies in these deposits are dominantly controlled by E–W-trending and NW–SE-trending shear zones. Molybdenum mineralization related to K-feldspar alteration comprises early molybdenite, pyrite, rutile, and monazite within gray quartz veins plus late molybdenite and pyrite within white quartz veins in the Dahu and Qinnan Au-Mo deposits. Early and late Au mineralization events have similar mineral assemblages of pyrite, native gold ± Au-Ag-Te minerals, rutile, and monazite associated with quartz-sericite alteration at Yangzhaiyu. The early disseminated molybdenite is characterized by rhombohedral polytype and oscillatory Re zoning, in contrast to the late molybdenite with a coexistence of rhombohedral and hexagonal polytypes and irregularly distributed Re. The early molybdenite has a Re-Os isochron age of 222.5 ± 1.3 Ma, compatible with a monazite U-Pb age of 224 ± 6.1 Ma, whereas late molybdenite provides a Re-Os isochron age of 185.0 ± 12 Ma, with the implication that the 3R-polytype molybdenite with oscillatory Re zoning is more suitable for high-precision dating. The early and late Au mineralization have a pyrite Re-Os age of 202.0 ± 5.9 Ma and U-Pb age of 124.0 ± 1.3 Ma, respectively. In accordance with its complex geodynamic setting, geological and geochronological studies record a complicated 100-million-year mineralization history with multiple magmatic-hydrothermal Mo and orogenic Au mineralization events that formed within a structural framework of multiply reactivated shear zones.</div></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"16 4","pages":"Article 102052"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S167498712500057X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The timings and geodynamic controls of Mo, Au, and Au-Mo deposits in the Xiaoqinling Orogen (> 630 t Au and 115, 000 t Mo), a rare Au-Mo province globally, are addressed by a combination of mineral parageneses, crystalline mineralogy, geochemistry, and Re-Os and U-Pb geochronology in the Dahu, Qinnan, and Yangzhaiyu deposits. The Xiaoqinling Orogen comprises an E-W-trending fold and thrust system with repeated structural reactivation and the Mo or Au orebodies in these deposits are dominantly controlled by E–W-trending and NW–SE-trending shear zones. Molybdenum mineralization related to K-feldspar alteration comprises early molybdenite, pyrite, rutile, and monazite within gray quartz veins plus late molybdenite and pyrite within white quartz veins in the Dahu and Qinnan Au-Mo deposits. Early and late Au mineralization events have similar mineral assemblages of pyrite, native gold ± Au-Ag-Te minerals, rutile, and monazite associated with quartz-sericite alteration at Yangzhaiyu. The early disseminated molybdenite is characterized by rhombohedral polytype and oscillatory Re zoning, in contrast to the late molybdenite with a coexistence of rhombohedral and hexagonal polytypes and irregularly distributed Re. The early molybdenite has a Re-Os isochron age of 222.5 ± 1.3 Ma, compatible with a monazite U-Pb age of 224 ± 6.1 Ma, whereas late molybdenite provides a Re-Os isochron age of 185.0 ± 12 Ma, with the implication that the 3R-polytype molybdenite with oscillatory Re zoning is more suitable for high-precision dating. The early and late Au mineralization have a pyrite Re-Os age of 202.0 ± 5.9 Ma and U-Pb age of 124.0 ± 1.3 Ma, respectively. In accordance with its complex geodynamic setting, geological and geochronological studies record a complicated 100-million-year mineralization history with multiple magmatic-hydrothermal Mo and orogenic Au mineralization events that formed within a structural framework of multiply reactivated shear zones.
Geoscience frontiersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍:
Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.